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Abstract. This paper seeks to improve an underutilized conventional bus route by convert-
ing it into a semiflexible transit system where passengers provide advance notice of their 
intended stops, allowing buses to skip downstream stops without demand by taking short-
cuts. This approach increases stop density, reduces walking distances to and from bus stops, 
and maintains operational efficiency. To design this system, we develop optimization models 
that maximize the number of stops while adhering to tour duration and arrival time con-
straints. A case study in Allegany County, Maryland, demonstrates significant enhancements 
for routes that were both underutilized (where the probability of a stop lacking demand 
exceeded 45%) and had layouts conducive to substantial shortcuts. In these instances, the 
number of stops can be increased by up to 160%, with the actual improvement depending on 
route configuration, passenger demand, and advance notice requirements.

Funding: Financial support from the the National Science Foundation [Grant 2055347] is gratefully 
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Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2024.0561. 
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1. Introduction
Conventional public transit, with fixed routes and 
schedules, operates efficiently in densely populated 
areas but is often underutilized in low-density regions, 
where long walking distances to bus stops discourage 
potential users (Sun et al. 2017). In contrast, demand- 
responsive transit provides personalized curb-to-curb 
service, eliminating the need for walking. However, 
its high operating costs limit widespread availability, 
often restricting it to specific groups, such as seniors 
and people with disabilities (Davison et al. 2014, Rah-
man et al. 2023).

To bridge the gap between conventional and fully 
flexible transit services, we propose a semiflexible tran-
sit system to enhance underutilized bus routes. This sys-
tem converts fixed stops into on-demand stops, which 
passengers must request in advance, and allows buses 
to skip stops without demand by taking shortcuts. By 
increasing stop density, this approach reduces walking 
distances while maintaining similar tour times to con-
ventional routes. Next, we compare conventional transit 
with the proposed semiflexible system.

System 1 (Conventional Transit). A conventional bus 
route has a fixed number of stops and a predetermined 
schedule, requiring the bus to arrive at each stop at spe-
cific times. Although a bus may skip stops without 
demand to reduce dwell time, the time saved is often 
lost waiting at downstream stops to realign with the 
fixed schedule. This structure often leads to inefficien-
cies, such as stopping at locations without demand, 
idling at empty stops, and requiring passengers to walk 
long distances because of a limited number of stops.

System 2 (Proposed Semiflexible Transit). To improve 
transit efficiency, we propose transitioning to on-demand 
stops, which passengers request in advance. This allows 
the bus to skip stops without demand by taking shortcuts, 
reducing both travel and dwell times. This approach 
increases stop density, reduces walking distances, and 
maintains the same or even shorter bus tour durations as 
System 1 with high probability.

Requiring passengers to provide longer advance 
notice enables the bus to skip more downstream stops, 
allowing for a higher stop density and shorter walking 
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distances. Figure 1 illustrates how stop density increases 
with longer notice periods while maintaining consistent 
tour durations with high probability and serving the 
same demand as conventional transit. However, this 
requires passengers to plan their trips further in ad-
vance, creating a trade-off between user flexibility and 
reduced walking distances.

This paper presents several contributions to the field 
of semiflexible transit system design: 
• We propose a semiflexible transit system that com-

bines the benefits of demand-responsive and fixed- 
route transit. Passengers provide advance notice of 
their intended stops, allowing buses to skip down-
stream stops without demand by taking shortcuts. This 
approach increases the number of stops, reduces walk-
ing distances, and maintains operational efficiency.
• To design the proposed semiflexible transit sys-

tem, we develop both stylized and simulation-based 
models. Stylized models explore trade-offs in system 
design, whereas simulation-based models, integrated 
with an online Bayesian learning framework, optimize 
bus operations across diverse real-world scenarios. 
These models aim to increase the number of stops 
while ensuring, with high probability, that bus tour 
durations remain the same or even shorter than con-
ventional transit systems and that passenger requests 
made with appropriate notice are honored.
• We applied our models to bus routes in Allegany 

County, Maryland, to evaluate the proposed semiflexi-
ble routing strategy. Significant enhancements were 
observed on routes that were both underutilized (where 
the probability of a stop lacking demand exceeded 45%) 
and had layouts conducive to substantial shortcuts. In 
these cases, the number of stops increased by up to 
160%, with the actual improvement depending on route 

configuration, passenger demand, and advance notice 
requirements.

This paper is structured as follows: Section 2 reviews 
relevant literature. Sections 3 and 4 describe the stylized 
and simulation-based models for designing the semi-
flexible transit system. Section 5 analyzes trade-offs 
through numerical experiments, and Section 6 applies 
these strategies to a case study in Allegany County, 
Maryland. Finally, Section 7 concludes the paper.

2. Literature Review
We begin by reviewing different types of flexible transit 
systems and contrasting them with the system proposed 
herein. Subsequently, we delve into various applica-
tions of stop skipping and explain how they differ from 
the objectives of our analysis.

2.1. Flexible Transit Systems
A flexible transit system typically provides door-to- 
door or stop-to-stop service without adhering to a fixed 
route. In contrast, a semiflexible transit system incorpo-
rates fixed stops, referred to as checkpoints, which vehi-
cles are required to visit. Between these checkpoints, 
vehicles may deviate from the baseline route to serve 
optional on-demand stops, allowing for a degree of ser-
vice flexibility. The transit cooperative research pro-
gram identifies six main types of semiflexible transit 
services, illustrations of which are detailed in Online 
Appendix A. They include route deviation, point devia-
tion, demand-responsive connector, request stops, 
flexible-route segments, and zone route (Koffman 2004). 
This literature review focuses on previous studies of 
semiflexible transit systems bearing resemblance to our 
proposed system.

Figure 1. (Color online) Illustrative Example of the Relationship Between Advance Notice and the Number of Stops in a Semi-
flexible Transit System, Using a Circular Fixed Route with Five Stops as the Baseline 

Notes. The total number of passengers is kept constant, resulting in the probability of a stop not being used increasing with the number of stops. 
Bus trajectories (dotted lines) in multiple simulation cycles show the shortcuts (chords) taken in the semiflexible system by skipping stops with-
out demand. The semiflexible system offers higher stop density, reducing walking distance to and from stops. It also maintains the same or even 
shorter tour duration with high probability. A simulation can be found at https://youtu.be/JeBA7_ToIR4.
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2.1.1. Route Deviation. In this semiflexible transit sys-
tem, vehicles follow a fixed schedule along a predeter-
mined route, but may deviate to fulfill on-demand 
requests within a designated area around the route (Pra-
telli and Schoen 2001; Quadrifoglio, Hall, and Dessouky 
2006). Studies suggest that route deviation performs 
well at lower demand levels (Pratelli et al. 2018). Vari-
ous optimization models have been developed to deter-
mine the most efficient deviated routes and assess 
performance. For example, Pratelli and Schoen (2001) 
presented a model where passengers signal buses for 
deviated stops on-site using a push button. An 
enhanced model by Pratelli et al. (2018) integrates 
advance reservations via phone calls alongside on-site 
requests. Route deviation’s primary advantage is its 
capability to serve additional passengers at deviated 
stops, but this often results in longer travel times for 
onboard passengers and increased waiting times for 
those at downstream stops (Pratelli and Schoen 2001). 
In contrast, our proposed system addresses on-demand 
requests by serving passengers exclusively at desig-
nated stops along the fixed route. Additionally, advance 
notice from passengers enables the bus to deviate from 
the fixed route for taking shortcuts to maintain opera-
tional efficiency.

2.1.2. Point Deviation. In point deviation systems, 
vehicles serve on-demand requests within a designated 
area, stopping at a limited number of fixed stops but not 
following a fixed route between them (Daganzo 1984). 
Previous studies have developed frameworks to assess 
the service quality of point deviation systems, finding 
that they can outperform conventional transit and route 
deviation systems, particularly at low demand levels 
(Daganzo 1984; Nourbakhsh and Ouyang 2012; Qiu et al. 
2015; Pratelli et al. 2018; Zheng, Li, and Qiu 2018). 
Enhancements for point deviation systems, such as 
using predefined areas (Nourbakhsh and Ouyang 2012) 
and common meeting points (Li et al. 2023), have been 
suggested to improve efficiency. These models typically 
involve reservations via phone or online to schedule 
stops. Our proposed system is similar to point devia-
tion, offering the flexibility of adaptive routing while 
ensuring that stops are served. Additionally, it main-
tains bus arrivals within a designated time window 
with high probability.

2.1.3. Demand-Responsive Connector and Zone Route. 
Demand-responsive connector systems and zone routes 
function as feeder services, gathering passengers within 
a responsive zone and transporting them to a transfer 
terminal linked to the main transit network (Chandra 
and Quadrifoglio 2013; Zheng, Li, and Qiu 2018). These 
services typically alternate between fixed-route opera-
tions during peak demand and on-demand service in 
low demand periods (Cayford and Yim 2004). 

Analytical models have been developed to determine 
the demand density required to switch between fixed- 
route and demand-responsive policies (Quadrifoglio 
and Li 2009, Li and Quadrifoglio 2010), and to optimize 
system design and operation, including factors like ser-
vice cycle length and service area (Chang and Schonfeld 
1991, Chandra and Quadrifoglio 2013). Although these 
models aim to enhance service quality by minimizing 
passenger and operator costs, they do not focus on 
increasing mobility by maximizing the number of stops, 
which is a key aspect of our study. Our proposed sys-
tem’s ability to maintain tour duration while accommo-
dating on-demand requests makes it suitable for use as 
a demand-responsive connector system or a zone route.

2.1.4. Hybrid Systems. Hybrid systems integrate vari-
ous types of semiflexible transit services to capitalize on 
their combined strengths. Systems that integrate fixed- 
route with point/route deviation services, for example, 
have been explored in several studies (Aldaihani and 
Dessouky 2003, Aldaihani et al. 2004, Crainic et al. 2005, 
Chen and Nie 2017, Sipetas and Gonzales 2021). These 
studies have developed analytical and mathematical 
programming models to optimize design, routing, and 
scheduling of hybrid systems. Other research has 
focused on broader modeling and simulation frame-
works for planning and evaluating various semiflexible 
transit options (Cortés, Pagès, and Jayakrishnan 2005; 
Errico et al. 2013, 2021; Silva, Vinel, and Kirkici 2022). A 
common challenge in hybrid systems is the requirement 
for passenger transfers, often leading to inconvenience. 
Our proposed semiflexible system, however, is tailored 
to seamlessly integrate with fixed systems, thereby 
avoiding the need for transfers.

2.2. Stop Skipping
The concept of skipping stops has received significant 
attention in both scientific literature and practical appli-
cations. However, most existing studies focus on opti-
mizing stop skipping to enhance operational efficiency 
and reduce costs, without aiming to increase the num-
ber of stops to minimize walking distances. In contrast, 
our study leverages stop skipping and shortcuts to 
introduce additional stops while maintaining service 
quality and efficiency. To contextualize our approach, 
we review several key studies that explore stop- 
skipping strategies with distinct objectives and 
methodologies.

For instance, Liu et al. (2013) investigated a bus stop- 
skipping scheme under random travel times, aiming to 
minimize total waiting time, in-vehicle travel time, and 
operating costs. They developed a genetic algorithm 
incorporating Monte Carlo simulation to optimize stop- 
skipping and deadheading strategies. Building on this, 
Chen et al. (2015) focused on integrating headway opti-
mization with stop-skipping control in bus rapid transit 
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(BRT) systems. Their study, based on Beijing BRT Line 
2, demonstrated that optimized headways with stop 
skipping could reduce total costs and in-vehicle time for 
passengers compared with traditional strategies. More 
recently, Zhang et al. (2021) developed an agent-based 
simulation model to optimize real-time bus stop- 
skipping and holding strategies. Their work accounted 
for random travel times and passenger arrivals to evalu-
ate operational efficiency. Notably, the study found that 
real-time stop skipping combined with holding per-
formed best under deterministic bus dispatch sche-
dules, whereas stop skipping alone was more effective 
in cyclic dispatch systems where buses are reassigned to 
the same route after completing their first tour.

2.3. Stop Skipping with Shortcuts
In addition to skipping stops, a few studies have evalu-
ated the impacts of taking shortcuts, but these efforts do 
not address the potential for increasing the number of 
stops—a central focus of our proposed semiflexible sys-
tem. Instead, existing research primarily examines 
shortcuts as a means to improve operational efficiency 
and reduce travel times.

Hadas and Ceder (2008) introduced a novel method 
for optimizing public transit systems using multiagent 
systems. This approach integrates real-time data on vehi-
cle locations, passenger demands, and travel times to 
enhance service reliability and efficiency. Key operational 
tactics such as holding, stop skipping, and shortcuts were 
employed to improve transfer synchronization and 
reduce travel times. Building on this work, Hadas and 
Ceder (2010) developed a dynamic programming model 
to further improve bus service efficiency by minimizing 
total travel time. Their model applied several real-time 
operational tactics, including holding, stop skipping, 
speed adjustments, and short-turn operations, and lever-
aged real-time data to dynamically adjust vehicle opera-
tions, reducing transfer times and increasing the 
likelihood of direct transfers.

Similarly, Osama et al. (2016) examined the effects of 
unscheduled stops and route deviations on bus service 
performance in Cairo. Using a prototype automatic 
vehicle location system, they collected data for a specific 
bus route and found that nearly 50% of trips involved 
shortcuts, where bus drivers deviated from the sched-
uled route. More recently, Aktaş, Sörensen, and Van-
steenwegen (2023) introduced a variable neighborhood 
search (VNS) algorithm to optimize the performance of 
a single bus line during peak hours. Their demand- 
responsive system targeted periods with significantly 
imbalanced passenger demand in opposite directions, 
increasing service frequency toward the city center by 
allowing some buses to skip less crowded stops or sec-
tions of the route when traveling away from the center. 
The VNS algorithm determined which buses should 

visit all stops and which should take shortcuts based on 
expected demand.

2.4. Contributions to the Literature
Our study differs from previous research in several key 
ways. First, prior studies have primarily used stop skip-
ping and shortcuts to improve operational efficiency 
and reduce costs. In contrast, our study strategically 
employs stop-skipping and shortcut strategies to in-
crease the density of on-demand stops, bringing them 
closer to passenger origins and destination, reducing 
their walking distance to the nearest stop, and maintain-
ing service quality and efficiency.

Second, existing semiflexible transit systems often 
deviate from their routes to pick up or drop off passen-
gers, which is likely to increase overall travel time and 
reduce service predictability. In contrast, we maximize 
the number of stops while keeping the bus tour duration 
of the semiflexible system within that of the fixed transit 
system with high probability. Advance reservations for 
on-demand service are considered only at predeter-
mined stops, aiming to provide a more predictable and 
efficient transit service. Finally, our advance reservation 
policy guarantees service to passengers with high prob-
ability, provided they request their intended stops with 
appropriate notice, which has not been considered 
before in the context of semiflexible transit systems.

3. Methodology: Stylized Model
In this section, we outline the methodology for design-
ing the proposed semiflexible transit system by examin-
ing a stylized scenario with uniformly distributed 
demand across evenly spaced stops along the bus route, 
an example of which is given in Figure 1. The model tai-
lored for this scenario is developed in Sections 3.1 to 3.4, 
whereas the problem of maximizing the number of 
stops is addressed in Sections 3.5 and 3.6. The theoretical 
analysis presented herein motivates the use of heuristics 
and the integration of derived constraints into a Bayes-
ian learning framework to address more intricate sce-
narios discussed in Section 4.

3.1. Preliminaries
Let n denote the number of evenly spaced stops in Sys-
tem 2, and let p denote the probability of a stop having 
no demand. Given a fixed and uniformly spread 
demand, increasing the number of stops results in a 
higher probability that any given stop will not be used 
as either an origin or a destination. This intuitive result 
can be rigorously proved under the conditions stated 
below. Specifically, the monotonicity of p with respect 
to n is formally proved in Online Appendix B.

Assumption 1 (Demand Distribution). Passengers’ origins 
and destinations are uniformly distributed along the bus 
route.
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Assumption 2 (Passenger Behavior). Each passenger uses 
the closest stops to their origin and destination, which are 
not the same. Moreover, the choices of origins and destina-
tions among the passengers are independent.

Proposition 1. Consider System 2 with the passenger dis-
tribution and behavior stated in Assumptions 1 and 2. 
Given a fixed demand of Ψ�passengers per round trip, the 
probability that a stop will not be used by any customer in 
a bus roundtrip is

p � 1� 2
n

� �Ψ

, (1) 

which increases with the number of stops n. For large n, we 
have p ~ e�2Ψ

n .

3.2. Bus Tour Duration
Let Xk denote the number of times the bus skips exactly 
k consecutive stops in its tour. Note that Xk is a discrete 
random variable with k taking integer values ranging 
from 1 to n� 1; for example, k � n� 1 means that the 
bus skips all stops except the depot. However, we limit 
the skipping of consecutive stops to no more than m at 
any given time (where m ≤ n� 1). Accordingly, we 
model System 2 while conditioning on the following 
event:

An, m � {Xk � 0, ∀k ∈ {m+ 1, m+ 2, : : : , n� 1 }}, 

which ensures the bus can skip at most m stops 
consecutively.

Let Tn, m denote the bus tour duration serving n stops, 
with the bus skipping at most m consecutive stops. This 
duration includes both driving time and the time spent 
waiting at bus stops for passengers to board and alight. 
Let c represent the maximum driving time when all n 
stops are visited, and let s denote the time spent at each 
stop. Let ζn, k denote the amount of time saved by skip-
ping k consecutive stops along the route. The bus tour 
duration is then given by

Tn, m � c+ n · s|fflfflffl{zfflfflffl}
Full tour duration

�
Xm

k�1
Xk(ζn, k + k · s)

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Time savings from skipping stops

, (2) 

where the summand reflects the time savings from skip-
ping k consecutive stops, both by shortening the driving 
distance by ζn, k and reducing dwell time by k · s. 
Because Tn, m depends on the random variables 
X1, : : : , Xm, which are not independent, it is itself a ran-
dom variable.

To initiate the analysis of System 2, we need to derive 
the cumulative distribution function (CDF), expected 
value, and variance of Tn, m. We should keep in mind that 
the random variables X1, : : : , Xm depend on p, the proba-
bility of skipping a stop, which is a function of n as given 
in (1). To proceed, we first derive the conditional 

probability mass function (PMF) of the random variables 
X1, : : : , Xm given An, m in Proposition 2. The formal proof 
of Proposition 2 is provided in Online Appendix C.

Proposition 2. Suppose the probability of skipping a stop 
is p. Let x0¢n�

Pm
j�1(j+ 1)xj and Xn, m¢{(x0, : : : , xm) :

Pm
j�0(j+ 1)xj � n, xj ≥ 0, ∀0 ≤ j ≤ m}. Then, for m ≥ 1,

P(X1 � x1, X2 � x2, : : : , Xm � xm |An, m)

�

�Pm
j�0 xj

�
!

Qm
j�0(xj!)

1�p
p

� �Pm
j�0

xj
1{(x0, : : : , xm)∈Xn,m}

P
(x0, : : : , xm)∈Xn,m

�Pm
j�0 xj

�
!

Qm
j�0(xj!)

1�p
p

� �Pm
j�0

xj
, 

where 1{(x0, : : : , xm)∈Xn,m} is binary indicator that is equal to one 
if (x0, : : : , xm) ∈ Xn, m and zero otherwise.

The PMF represents the probability of a specific bus 
tour, modeled as an n-digit binary sequence where one 
denotes a skipped stop and zero denotes a visited stop. 
The binary sequence must consist of blocks of the form 
1: : :1|fflffl{zfflffl}

j

0, where 0 ≤ j ≤ m, representing up to m consecu-

tive skipped stops followed by a visited stop. The PMF 
is derived based on the likelihood of these blocks occur-
ring, considering the probability p of skipping a stop, 
which is explicitly computed in Proposition 1. Each 
sequence configuration belongs to the set Xn, m, where 
the number of blocks must satisfy the equation 
Pm

j�0(j+ 1)xj � n, ensuring that the total number of stops 
is n. The last binary digit is always zero, ensuring that 
the bus returns to the depot. This derivation accounts 
for all possible valid bus tours, with the PMF providing 
the probability of any given tour.

By utilizing the derived PMF, we can compute the 
conditional expectation of Tn, m given An, m as follows:

E(Tn, m |An, m) �
X

(x0, : : : ,xm)∈Xn,m

c+ n · s�
Xm

k�1
xk(ζn, k + k · s)

 !

P(X1 � x1, : : : , Xm � xm |An, m):

(3) 

Similarly, we use the derived PMF and the conditional 
expectation to compute the conditional variance of Tn, m 
given An, m as follows:

Var(Tn, m |An, m) � E(T2
n, m |An, m)� [E(Tn, m |An, m)]

2, (4) 

with detailed calculations presented in Online Appen-
dix D.

Last, we derive the CDF of Tn, m given An, m. Note that 
(2) implies that each realization of X1, X2, : : : , Xm results 
in a different realization of Tn, m; thus, we can compute 
the conditional CDF of Tn, m by leveraging the condi-
tional PMF of (X1, X2, : : : , Xm) specified in Proposition 2. 
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Define T (t, An, m)¢{(x1, : : : , xm) ∈ An, m : c+ n · s�
Pm

k�1 xk(ζn, k 
+ k · s) ≤ t}, that is, the set of all realizations of X1, X2, 
: : : , Xm that result in Tn, m ≤ t. Then, we can express the 
conditional CDF as the sum of the probabilities of all 
such possible outcomes:

P(Tn, m ≤ t |An, m) �
X

(x1,x2, : : : ,xm)∈T (t,An,m)

P(X1 � x1, X2 � x2, : : : , Xm � xm |An, m):

(5) 

We will utilize (5) to ensure that, with a high probability, 
the bus tour duration in System 2 does not exceed its 
counterpart in System 1. This allows for effective com-
parison and evaluation of the performance of the two 
systems.

3.3. Bus Arrivals
Let I � {1, 2, : : : , n} represent the set of stops. A bus 
departing from the depot at time 0 and arriving at stop 
i ∈ I can skip at most m consecutive stops before reach-
ing stop i. Denote by Gi, m the arrival time of the bus at 
stop i. Let Si be a binary indicator that equals one if stop 
i is skipped and zero otherwise. Note that, given Si � 0, 
we must have m ≤ i� 1 because the bus can skip at 
most i� 1 consecutive stops before arriving at stop i. 
Then, given An, m and Si � 0, we can derive the following 
expression for Gi, m by treating stop i as the “depot” and 
following the computation for Tn, m in (2):

Gi, m � ci + (i� 1)s
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Arrival time without skipping

�
Xm

k�1
X(i)k (ζn, k + k · s)

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Time savings from skipping stops

, 

where ci represents the driving time from the depot to 
stop i when no stops are skipped, and the superscript on 
X(i)k indicates that it counts the number of k consecutive 
skips on a tour terminating at the ith stop. Noting that cn 

equals c from (2) and that X(n)k � Xk, we have that 
Tn, m � Gn, m + s; that is, the arrival time of the bus back at 
the depot (stop n) is offset by s from the bus tour dura-
tion. Thus, we have E(Gn, m |An, m, Sn � 0) � E(Tn, m |An, m)

� s, and Var(Gn, m |An, m, Sn � 0) � Var(Tn, m |An, m).
Similarly, if we consider stop i as the depot and set 

n � i in Proposition 2, then the resulting P(X1 � x1, X2 �
x2, : : : , Xm � xm |Ai, m) is exactly the conditional PMF of 
X(i)1 , X(i)2 , : : : , X(i)m given An, m and Si � 0. Then, similarly 
to (3) and (4), we can obtain E(Gi, m |An, m, Si � 0) and 
Var(Gi, m |An, m, Si � 0) as follows:

E(Gi, m |An, m, Si � 0)

�
X

(x0, : : : ,xm)∈X i,m

ci + i · s�
Xm

k�1
xk(ζn, k + k · s)

 !

P(X1 � x1, X2 � x2, : : : , Xm � xm |Ai, m)� s, (6) 

Var(Gi, m |An, m, Si � 0) � E(G2
i, m |An, m, Si � 0)

� [E(Gi, m |An, m, Si � 0)]2, (7) 

with detailed calculations presented in Online Appen-
dix D. Next, we will use (6) and (7) to ensure that a 
request to use stop i is met with a high probability.

3.4. Fulfilling Passenger Requests
Recall that System 2 should be designed to fulfill pas-
senger requests with a high probability. To achieve this 
goal, we construct a time interval during which the bus 
is expected to arrive at stop i with a probability of at 
least 1� α. Recall that Gi, m given An, m and Si � 0 is a 
function of (X(i)1 , : : : , X(i)m ), so we can explicitly character-
ize the conditional probability distribution of Gi, m. 
Therefore, we choose εi, 1�α=2 to be the smallest real 
number with two decimal places such that

P(E(Gi, m |An, m, Si � 0)� εi, 1�α=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Gi, m |An, m, Si � 0)

p

≤ Gi, m ≤ E(Gi, m |An, m, Si � 0)

+ εi, 1�α=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Gi, m |An, m, Si � 0)

p
|An, m, Si � 0) ≥ 1� α:

(8) 

Accordingly, the 100(1� α)% confidence interval for 
the bus arrival time at stop i is given by

[E(Gi, m |An, m, Si � 0)� εi, 1�α=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Gi, m |An, m, Si � 0)

p
,

E(Gi, m |An, m, Si � 0) + εi, 1�α=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Gi, m |An, m, Si � 0)

p
]:

Next, our goal is to ensure that if a passenger does 
request to use a particular stop sufficiently far in 
advance, the operator will serve that stop with high 
probability. To achieve this, we introduce the look- 
ahead period τn, m to quantify how far downstream the 
bus is allowed to skip. We recall that a bus is allowed to 
skip at most m consecutive stops, which can also be 
expressed as downstream stops that are at most τn, m 
time units away. The value of this parameter is com-
puted as

τn, m � dn, m + (m� 1)s, 

where the first term represents the driving time needed 
to traverse m out of n stops, and the second term is the 
dwell time at stops (see Online Appendix E for an illus-
tration). Therefore, a request to use stop i must be sub-
mitted at least τn, m time units before the lower bound of 
the interval to ensure that the bus does not skip the stop 
100(1� α)% of the time (see Figure 2 for an illustration). 
Accordingly, for each stop i, we impose the constraint

εi, 1�α=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Gi, m |An, m, Si � 0)

p
+ τn, m ≤ γ, (9) 

where the parameter γ�represents the advance notice 
with which passengers must notify the operator of their 
intent to use a stop. This constraint ensures that if a pas-
senger submits their request at least γ�time units before 
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the bus’s expected arrival at the desired stop, the stop 
will be visited 100(1� α)% of the time. Notably, a larger 
value of γ�gives the transit operator more flexibility to 
skip stops without demand and, in turn, deploy addi-
tional stops (i.e., increase both m and n). However, a 
larger γ�also inconveniences passengers, as requiring 
longer notice forces them to plan their trips further in 
advance to ensure their stops are not skipped. Thus, 
there is a trade-off between increasing the number of 
stops and the required advance notice. Transit operators 
must carefully consider this balance to improve 
coverage through higher stop density while limiting 
passenger inconvenience. Additionally, operational 
uncertainties arising from probabilistic constraints may 
prevent stop requests from being fulfilled 100 · α% of 
the time. In such cases, operators can promptly notify 
the passengers through real-time communication if the 
stop cannot be served, and if necessary, alternative 
transportation (e.g., transportation network companies 
or taxi services) can be arranged to minimize passenger 
inconvenience.

3.5. Maximizing the Number of Stops
Our objective is to maximize the value of n, which repre-
sents the number of stops, while ensuring that the dura-
tion of the bus tour in the flexible system remains below 
the duration of the same tour in System 1 with high 
probability. Additionally, we aim to serve reservations 
submitted within the designated time windows with 
high probability. To achieve this objective, we formulate 
the following optimization problem:

max
n∈Z++, m∈Z++

n (10) 

s:t: P(Tn, m ≤ b |An, m) ≥ 1� β, (11) 
εi,1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Gi,m |An,m,Si�0)

p
+τn,m ≤ γ, ∀i∈ I,

(12) 
m≤M: (13) 

The constraint in (11) is formulated using the PMF given 
in (5). This constraint ensures that, with a probability of 
1� β, the bus in System 2 returns to the depot before its 
counterpart in System 1 with n stops, thus enabling it to 
wait until time b to start the next tour, where b � c+ n · s. 

This ensures that the variability in bus tour duration 
does not carry over to the subsequent tour and enables a 
fair comparison between the two systems. The set of 
constraints in (12) is based on (9). These constraints uti-
lize the conditional variance as specified in (7), along 
with the parameter εi, 1�α=2 defined in (8). By incorporat-
ing these constraints, we can provide assurance that 
passengers’ requests will be accommodated, and their 
stops will be reliably served. Constraint (13) restricts the 
number of consecutive skips to a maximum of M. This 
enables the operator to directly regulate the variability 
in the bus route.

It may be intuitively expected that the time windows 
for bus arrivals should expand at downstream stops. 
This could suggest that the constraint in (12) for the final 
stop, n, would dominate the same constraints for 
i ∈ {1, 2, : : : , n� 1}. Consequently, one might think that 
relaxing the constraints in (12) for i ∈ {1, 2, : : : , n� 1}
would not affect the overall problem. However, as we 
will demonstrate in Remark 1 (see proof in Online 
Appendix F), this is not the case.

Remark 1. The term εi, 1�α=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Gi, m |An, m, Si � 0)

p
+

τn, m is not monotonically increasing with respect to i. 
Consequently, the constraints in (12) cannot be 
relaxed for i ∈ {1, 2, : : : , n� 1}.

3.6. Solution Approach
To devise an efficient solution method for (10)–(13), it is 
essential to understand the bounds imposed by the con-
straints. As n increases while m is fixed, the bus must 
visit more locations, extending the tour duration; thus, n 
cannot increase indefinitely without violating Con-
straint (11). Conversely, as n decreases while m remains 
fixed, the bus can skip a larger proportion of stops, lead-
ing to higher variance in arrival times and thereby 
increasing the risk of violating Constraint (12). There-
fore, Constraint (11) establishes the upper bound for n, 
whereas (12) defines the lower bound. Feasible points 
are confined to the region defined by these bounds, 
though they may not be uniformly distributed within 
this region because of the nonmonotonic behavior of 
P(Tn, m ≤ b |An, m) and εi, 1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Gi, m |An, m, Si � 0)

p
+

τn, m with respect to n.

Figure 2. (Color online) Illustration of Passenger Reservation with Respect to Bus Arrival Time Window at Stop i 
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We tackle Problem (10)–(13) using a custom grid 
search (Algorithm 1), which primarily relies on the 
upper bound to identify the optimal solution (n∗, m∗)
that maximizes the number of stops. The algorithm 
starts with the maximum possible number of consecu-
tive skips, m �M, and the corresponding upper bound 
for n. It then decreases n either until the first feasible 
point is found or until confirming that no feasible n 
exists. Afterward, it decrements m by one and repeats 
the process. Throughout, Algorithm 1 avoids evaluating 
solutions that are dominated by the best feasible solu-
tion found so far.

Algorithm 1 (A Custom Grid Search to Determine Optimal 
Solution for (10)–(13))

Input: γ; β; s; v; c; b; M; n
Output: Optimal solution (n∗, m∗). 
1: procedure Determining optimal solution based 

on custom grid search
2: m←M; m∗ ← 1; n∗ ← n
3: n∗ ← n . Set initial best solution
4: while m > 0 do
5: Nm � inf n ∈ Z+ : ζn, m < s, n ≥ n ·s·(m+1)

s�ζn,m

n o

. Set upper bound
6: n←Nm
7: while n > n∗ do
8: if P(Tn, m ≤ b |An, m) ≥ 1� β�then
9: τn, m � dn, m + (m� 1)s

10: if εi, 1�α=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Gi, m |An, m, Si � 0)

p
+ τn, m ≤ γ, 

∀i ∈ I then
11: if m �M then
12: m∗ ←m; n∗ ← n . Update best 

feasible solution
13: else
14: if n > n∗ then
15: m∗ ←m; n∗ ← n . Update 

best feasible solution
16: end if
17: end if
18: end if
19: end if
20: n← n� 1
21: end while
22: m←m� 1
23: end while
24: return (n∗, m∗) . Return the optimal solution
25: end procedure

Next, we focus on the upper bound used in Algo-
rithm 1. Specifically, we show that Constraint (11) is vio-
lated for any n greater than the established upper bound 
in Proposition 3 (proved in Online Appendix J). To 
motivate this proposition, we assume two intuitive 
properties of ζn, k. First, for any given n, ζn, k increases 
with k because skipping more stops results in greater 
time savings. Second, for any fixed k, ζn, k decreases as n 

increases. Some of the subsequent analysis will be estab-
lished based on these two properties.

Assumption 3. The function ζn, k, which represents the 
time saved by skipping k consecutive and evenly spaced 
stops along the route, has the following properties: 
• For fixed n, ζn, k increases with k .
• For fixed k, ζn, k decreases with n, and limn→∞ζn, k � 0.

Proposition 3. Consider any fixed m, and define

Nm¢inf n ∈ Z+ : ζn, m < s, n > n · s · (m + 1)
s� ζn, m

� �

: (14) 

Suppose that Assumption 3 holds, which guarantees that 
the set in (14) is nonempty. Then, for all n ≥Nm, it holds 
that P(Tn, m ≤ b |An, m) � 0.

Note that the upper bound Nm can be obtained by 
starting at n � n and incrementing it until the two condi-
tions are met. Computing Nm in this manner is sufficient 
for Algorithm 1 to subsequently find an optimal solu-
tion. However, if we consider a specific bus route con-
figuration in which an explicit expression of ζn, k is 
available, then we can further determine a slightly 
looser but closed-form upper bound N

^

m and use it to 
obtain Nm more efficiently as follows. For example, if 
we consider the circular route in Figure 1, then ζn, k 
represents the time difference between traveling along 
the circumference and the chord bypassing k stops:

ζn, k �
2rπ(k+ 1)

nv
�

2rsin π(k+1)
n

� �

v
, (15) 

where r is the radius of the circular route, and v is the 
speed of the vehicle (see Figure 16 in Online Appendix 
H for an illustration). As shown in Proposition 5, our 
explicit characterization of ζn, k allows us to derive a 
closed-form upper bound N

^

m for Nm, thereby bracket-
ing Nm in the finite interval [n(m+ 1), N

^

m]. Armed with 
this bracket, we can efficiently determine Nm by using a 
standard search method such as binary search, until the 
conditions in (14) are satisfied. Before deriving this 
upper bound (proved in Online Appendix I), we show 
in Proposition 4 that ζn, k under the circular route model 
satisfies the properties of Assumption 3. The formal 
proof of this proposition is provided in Online Appen-
dix H.

Proposition 4. For the circular route model, ζn, k, as given 
in (15), satisfies the properties of Assumption 3.

Proposition 5. Consider any fixed m, and define

N
^

m �

�
2r(m + 1)

sv π� sin πn

� �
n

� �
+ n · (m + 1)

�

:

Then, under the circular route model with ζn, k given in 
(15), it holds that Nm ≤ N

^

m.
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We can interpret the bound N
^

m as follows. The second 
term, n(m+ 1), indicates that if we allow skipping up to 
m consecutive stops, then for every m+ 1 stops, we can 
always skip m of them and visit the last one. This 
approach is feasible because we still visit n stops as in 
System 1, although without considering shortcuts. 
Thus, n(m+ 1) would serve as an upper bound if the 
bus were constrained to travel only along the circle. Fur-
thermore, the first term, 2r(m+1)

sv π� sin π
n
� �

n
� �

, accounts 
for the time-saving benefit of taking shortcuts. Together, 
these two terms in the definition of N

^

m illustrate the 
maximum number of stops that can be possibly added if 
no probability constraint on bus tour duration is 
considered.

Next, we turn our attention to Algorithm 1 and its 
computational complexity. Note that the upper bound 
Nm is applicable to all feasible values of n for a given 
fixed m. Furthermore, because ζn, m is increasing in m 
(Assumption 3), we can see that Nm is also increasing in 
m. Thus, we have supm≤MNm �NM, which implies that 
Algorithm 1 examines at most M(NM� n) points to 
return an optimal solution (n∗, m∗). However, for each 
(n, m), we need to compute the set Xn, m defined in Prop-
osition 2, whose cardinality increases exponentially 
with n and m. Specifically, the upper bound on its cardi-

nality is min
n
(2n+m(m+3))m
m!·(m+1)!·2m ,

�m+
� n

2
�

m

�o
, resulting in an 

exponential run time for Algorithm 1. The computa-
tional complexity of Algorithm 1 is presented in Propo-
sition 6.

Proposition 6. The time complexity of Algorithm 1 for 
finding the optimal solution to Problem (10)–(13) is

O

 

(M2N2
M +MN3

M) ·min

(

(2NM +M(M + 3))M

M! · (M + 1)! · 2M ,

M + ⌊NM

2 ⌋
M

0

@

1

A

)!

:

In particular, for the circular route model, the time com-
plexity of Algorithm 1 is O(M2(e

2

2 )
M
).

Algorithm 2 (Dynamic Programming Solution to Determine 
N∗m) 

1: Input: m, Nm, s, b, c
2: Output: Tightened upper bound N∗m
3: n←Nm
4: Initialize t∗n, m← c+ n · s . Initialize t∗n, m at the 

largest possible value
5: while t∗n, m > b do
6: n← n� 1
7: Calculate ζn, k for each k ∈ {1, 2, : : : , m}
8: Define D←{di � 0 | i ∈ {1, 2, : : : , n+ 1}}

. Initialize dynamic programming tabulation

9: for i ∈ [1, n] do
10: for k ∈ [1, m] do
11: if i ≥ k+ 1 then
12: di←max{di, di�(k+1) + (ζn, k + k · s)}
13: end if
14: end for
15: end for
16: Initialize xk← 0 for each k ∈ {1, 2, : : : , m}
17: i← n
18: while i > 1 do
19: for k← [1, m] do
20: if i ≥ k+ 1 and di � di�(k+1) + (ζn, k + k · s) then
21: xk← xk + 1
22: i← i� (k+ 1)
23: break
24: end if
25: end for
26: end while
27: t∗n, m← c+ n · s�

Pm
xk�1 xk(ζn, k + k · s)

28: end while
29: Return N∗m← n

Since checking the feasibility of each point (n, m) is 
computationally intensive because of the size of the set 
Xn, m, we further tighten the upper bound Nm in Propo-
sition 7 (see proof in Online Appendix K) by repeatedly 
applying dynamic programming (Algorithm 2) to solve 
the unbounded knapsack problem. This additional 
effort to reduce the feasible region is well justified, espe-
cially for large m. Specifically, to eliminate a point (n, m), 
Algorithm 2 applies dynamic programming with a 
pseudopolynomial time complexity of O(nm). This 
approach is more efficient than constructing the set 
Xn, m and checking the feasibility of constraints be-
cause the lower bound on the cardinality of Xn, m is 

max
n

nm

m!·(m+1)! ,
�m+

� n
2
�

m

�o
(see the proof of Proposi-

tion 6 in Online Appendix J). Thus, the benefit of apply-
ing Algorithm 2 to reduce the feasible region outweighs 
the cost of the additional computations required to 
tighten the upper bound Nm.

Proposition 7. The output of Algorithm 2, denoted by N∗m, 
provides a tighter upper bound on n than Nm; that is, 
N∗m ≤ Nm.

4. Methodology: Simulation-Based Models
Building on our previous discussion of a stylized bus 
route model with uniformly spaced stops, we now turn 
to more complex scenarios where stops are nonuni-
formly distributed. To capture this realism, we propose 
two distinct simulation-based models tailored to differ-
ent demand scenarios. In the first scenario, where 
demand is assumed to remain unchanged despite the 
addition of new stops, our model places stops to mini-
mize walking distances for passengers. Conversely, in 
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the second scenario, which assumes an increase in 
demand due to new stops, our model deploys stops in a 
manner that maximizes demand coverage.

4.1. Minimizing Walking Distance for 
Fixed Demand

Consider a conventional bus route with a set of current 
stops, denoted by N. Passengers travel on foot from 
their starting locations to the nearest bus stop in N, and 
from their alighting bus stop in N to their final destina-
tions. To enhance this route, we define C as a set of can-
didate locations for new bus stops, as identified by a 
transit authority. We consider the integration of a subset 
of these candidate stops, denoted by S ⊆ C, into the 
existing route. In this context, ξ(N ∪ S) represents the 
stochastic demand at stops, which includes both the 
existing stops and the new stops.

The function f (N ∪ S,ξ(N ∪ S)) quantifies the total 
walking distance for all passengers, taking into account 
the distances from each passenger’s starting location to 
the nearest stop within N ∪ S and from their alighting 
stop to their final destination. Integration of candidate 
stops S into the existing route also considers the variabil-
ity in bus tour durations. The duration of the bus tour 
and the arrival times at the stops, given the new configu-
ration of stops and their demand, are denoted by T(N ∪
S,ξ(N ∪ S)) and Gi(N ∪ S,ξ(N ∪ S)), respectively. For 
notational convenience, we abbreviate them to T and Gi 
in the following context. These metrics provide insights 
into the system’s performance, influenced by both the 
locations of the stops and passenger demand.

Our objective is to select a subset S ⊆ C for deploying 
new bus stops to minimize the expected walking dis-
tance, ensuring compliance with constraints analogous 
to (11) and (12). This can be formulated as

min
S⊆C, τ≥0

E[f (N∪S, ξ(N∪S))]

s:t: P(T(N∪S,ξ(N∪S)) ≤ b |π(τ)) ≥ 1�β,

εi,1�α=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Gi(N∪ S,ξ(N∪S)) |π(τ))

p
+τ ≤ γ,

∀i∈N∪ S,
(16) 

where the variance in the bus’s arrival times at individual 
stops, as well as the overall duration of the bus tour, is 
conditioned on the policy π(τ). This policy establishes 
restrictions on the number of stops a bus can consecu-
tively skip. Specifically, under π(τ), a bus is not permitted 
to bypass any downstream stop that lies beyond a thresh-
old of τ�time units, where τ�is the look-ahead period.

4.2. Greedy Solution Approach
To address Problem (16), we devise a greedy heuristic, 
which is coupled with a Bayesian framework for the eval-
uation of constraints, as detailed in Algorithm 3. This 

algorithm iteratively evaluates each remaining candidate 
stop one at a time, selecting the feasible stop that provides 
the highest improvement in the objective value. This pro-
cess is repeated until no further improvements can be 
made. We estimate the objective function in (16), repre-
senting the expected walking distance, through the appli-
cation of the sample average approximation (SAA) 
technique (Shapiro, Dentcheva, and Ruszczynski 2021). 
Let W represents a set of scenarios for stochastic demand, 
where each scenario w ∈W corresponds to a specific real-
ization of demand patterns. Similarly, ξw(N ∪ S) denotes 
the demand realization under scenario w, for the com-
bined set of existing stops N and new stops S. Specifically, 
for a given set S and policy π(τ), we simulate bus opera-
tions under each demand scenario w and approximate 
the objective function in (16) as follows:

1
|W |

X

w∈W
f (N ∪ S, ξw(N ∪ S)), 

where the summation over w ∈W allows us to average 
the simulated walking distances across all demand sce-
narios, providing a comprehensive evaluation of the 
expected walking distance.

Concurrently, we employ a Bayesian framework to 
analyze the simulation experiment outputs and assess 
violation of constraints in (16) with as few simulation runs 
as possible. This approach holds a distinct advantage over 
traditional frequentist methods, which generally necessi-
tate a large predetermined number of simulations. In 
contrast, we will sequentially conduct simulation experi-
ments to collect observations about the arrival times and 
the bus tour duration. Then, we will establish a Bayesian 
online learning model for estimating the unknown para-
meters, which can be compactly updated using the 
sequential observations. Based on this Bayesian frame-
work, we are able to efficiently evaluate the feasibility of S 
and π(τ) by invoking the constraints in (16). In particular, 
we establish a stopping rule for determining the termina-
tion of the sequential experiments, which helps reduce 
the number of simulation experiments needed for estima-
tion while still maintaining desirable solution quality.

In addition to reducing the number of simulation 
experiments, we also aim to decrease the duration of 
individual simulation runs by aborting them immedi-
ately once the bus tour duration surpasses the upper 
bound b. This operation results in two types of observa-
tions from our simulations: (i) complete observations, 
which occur when the bus tour duration remains below 
the upper bound b, allowing this simulation run to com-
plete, and (ii) censored observations, which occur when 
the bus tour duration exceeds b, leading to early termi-
nation of this simulation run and resulting in a binary 
signal that only indicates the upper bound was 
exceeded. Obviously, such early termination reduces the 
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duration of our simulation runs whenever it occurs, but 
the resulting censored observations only carry incomplete 
information about the simulated bus tours. Nonetheless, 
we are able to develop a compact online learning model 
via an approximate Bayesian approach (Chen et al. 2022), 
which effectively learns from both complete and censored 
observations and thus achieves the same level of learning 
efficiency as if only complete observations were collected.

4.2.1. Conjugate Bayesian Approach for Arrival Times. 
Denote by Gi, r the arrival time at stop i in the rth simula-
tion experiment and assume Gi, 1, Gi, 2, : : : are indepen-
dent and identically distributed (i.i.d.) samples of Gi. 
Because Gi must be positive, we model Gi with a log- 
normal distribution, that is, log(Gi) ~ N (Ωi,Σ2

i ), where 
both Ωi and Σ2

i are unknown parameters. We specifi-
cally use the log-normal distribution because it not only 
has a positive support but also allows flexible parame-
terization that can fit a variety of density curve shapes. 
Then, to efficiently learn these unknown parameters 
from the sequential observation Gi, r, we establish a 
Bayesian learning model by assuming a normal- 
inverse-gamma (NIG) prior distribution for (Ωi,Σ2

i ), 
that is, Σ2

i ~ Inverse-Gamma(χi, 0,Υi, 0), and Ωi |Σ
2
i ~ 

N (Θi, 0,Σ2
i =Λi, 0), where χi, 0, and Υi, 0 are the parameters 

of the inverse-gamma distribution that represent our 
prior belief about the variance Σ2

i , and Θi, 0 is our prior 
belief about the mean Ωi with Λi, 0 indicating how confi-
dent we are about our prior belief. Because of the conju-
gate property of the NIG prior (DeGroot 1970, Koch 
2007), the posterior distribution of (Ωi,Σ2

i ) still belongs 
to the NIG distribution family. Therefore, whenever we 
collect a new observation Gi, r from the simulation 
experiment, we can compactly and efficiently update 
the posterior distribution of (Ωi,Σ2

i ) by simply updating 
the parameters of the prior distribution at that time 
stage. To be specific, let (χi, r, Υi, r, Θi, r, Λi, r) denote the 
prior parameters of (Ωi,Σ2

i ) at the rth time stage where 
the observations from the first r simulation experiments, 
that is, Gi, 1, : : : , Gi, r, have been collected and the (r+ 1)st 
experiment is to be conducted. Then, when Gi, r+1 is col-
lected from the (r+ 1)st experiment, the posterior para-
meters (χi, r+1, Υi, r+1, Θi, r+1, Λi, r+1) can be obtained by

χi, r+1 � χi, r +
1
2 ,

Υi, r+1 � Υi, r +
Λi, r(log(Gi, r+1)�Θi, r)

2

2(Λi, r + 1) ,

Θi, r+1 �
Λi, rΘi, r + log(Gi, r+1)

Λi, r + 1 ,

Λi, r+1 � 1+Λi, r: (17) 

Then, (χi, r+1, Υi, r+1, Θi, r+1, Λi, r+1) will become the prior 
parameters at the (r+ 1)st time stage. Therefore, we can 

recursively update these parameters using (17) at each 
time stage when a new Gi, r is collected from the sequen-
tial simulation experiments.

4.2.2. Approximate Bayesian Approach for Tour Dura-
tion. Denote by Tr the bus tour duration in the rth simula-
tion experiment and assume T1, T2, : : : are i.i.d. samples of 
T. Similarly as in Section 4.2.1, we model T with a log- 
normal distribution, that is, log(T) ~ N (ρ,σ2), where ρ�is 
the unknown mean of log(T) with σ2 being the variance. 
For notational convenience and model tidiness, we assume 
the variance σ2 is known. In practice, we can estimate σ2 

using the sample variance, as will be illustrated later in 
Section 4.2.3.

To efficiently learn ρ�using the sequential outputs, 
we again establish a Bayesian learning model by 
assuming it has a normal prior, that is, ρ ~ N (θ0,υ0). 
Should all Tr be fully observed, we could then devise a 
compact Bayesian learning model utilizing conjugacy, 
as described in Section 4.2.1. However, given that any 
simulation run exceeding the bus tour duration 
threshold b is terminated immediately, not all Tr will 
be observable. Thus, we define a binary signal ψr to 
indicate whether Tr is observed in the rth simulation. 
That is, ψr � 1 if Tr ≤ b, and Tr is observed, and ψr � 0 
if Tr > b, and the exact value of Tr will not be available 
because the simulation experiment is not finished 
because of early termination. Consequently, we will 
not be able to construct a conjugate Bayesian online 
learning model for ρ�as for (Ωi,Σ2

i ) in Section 4.2.1, 
because the conjugacy property no longer exists 
because of the incomplete observations. Therefore, we 
will adopt an approximate Bayesian approach to learn 
ρ, which can achieve the same level of learning effi-
ciency as a conjugate Bayesian learning model while 
theoretically guaranteeing the consistency of the esti-
mators (Chen and Ryzhov 2020). To proceed, denote 
by θr and υr the prior mean and variance of ρ�at the rth 
time stage where the observations from the first r sim-
ulation experiments have been collected. Then, if 
ψr+1 � 1 and Tr+1 is observed from the (r+ 1)st experi-
ment, we can simply update the prior parameters 
based on the conjugacy property as in Section 4.2.1
using

θr+1 � θr +
log(Tr+1)�θr

σ2 + υr
υr,

υr+1 � υr�
υ2

r
σ2 + υr

: (18) 

Then, N (θr+1,υr+1)will become the prior distribution at 
the (r+ 1)st time stage.

However, if ψr+1 � 0, then the conjugacy property is 
no longer available because Tr+1 will not be available. In 
such a case, Chen et al. (2022) propose an alternative for 
constructing closed-form updates for θr and υr based on 
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approximate Bayesian inference. Specifically, they ap-
proximate the exact posterior distribution of ρ�given 
ψr+1 � 0 with an artificial normal distribution N 

(θr+1,υr+1) through matching the first two moments of 
these two distributions, that is, θr+1 � E(ρ |ψr+1 � 0) and 
υr+1 � Var(ρ |ψr+1 � 0). Solving these moment-matching 
equations, we can obtain the following closed-form 
updates for θr and υr:

θr+1 � θr +
φ(ηr)

(1�Φ(ηr))
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 + υr
√ υr, (19) 

υr+1 � υr�
υr

σ2 + υr
+
υ2

r
σ2 + υr

· 1� ηr
φ(ηr)

Φ(ηr)
�
φ(ηr)

2

Φ(ηr)
2

 !2

,

(20) 

where ηr �
log b�θrffiffiffiffiffiffiffiffiffi
σ2+υr
√ , and φ�and Φ�are the probability den-

sity function and CDF of the standard normal distribu-
tion respectively. Once θr and υr are updated using (19) 
and (20), we will discard the exact posterior distribution 
of ρ�given ψr+1 � 0, and N (θr+1,υr+1) will become the 
prior distribution at the (r+ 1)st time stage. Addition-
ally, although the variance reductions in (18) and (20) 
are different, Chen et al. (2022) note that the impact of 
the additional variance reduction term in (20) is usually 
minimal because the variance υr becomes small when r 
gets sufficiently large, making (18) and (20) approxi-
mately identical. Therefore, they suggest using (18) uni-
formly to update υr. Thus, we follow their suggestion 
and summarize the recursive updates for θr and υr at 
each time r as follows:

θr+1 � θr +ψr+1
log(Tr+1)�θr

σ2 + υr
υr

+ (1�ψr+1)
φ(ηr)

(1�Φ(ηr))
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 + υr
√ υr,

υr+1 � υr�
υ2

r
σ2 + υr

: (21) 

4.2.3. Bayesian Evaluation of Constraints. With the 
posterior distributions recursively specified by (17) and 
(21), we can sequentially evaluate the constraints in (16). 
At each time r, because T |ρ�is normally distributed, we 
can compute the probability that the bus tour duration 
remains within a desired threshold b given ρ�is equal to 
its prior mean:

P(T ≤ b |ρ � θr) � P(log(T) ≤ log b |ρ � θr)

� Φ
log b�θr

σ

� �

: (22) 

Similarly, because Gi | (Ωi,Σ2
i ) follows a log-normal dis-

tribution, we can specify the uncertainty of the arrival 
time at stop i given that Ωi and Σ2

i are equal to their 

prior means as follows:

Var Gi |Ωi �Θi, r,Σ2
i �

Υi, r

χi, r� 1

� �

� exp Υi, r

χi, r� 1

� �

� 1
� �

exp 2Θi, r +
Υi, r

χi, r� 1

� �

: (23) 

Note that the constraints in (16) are imposed such that 
the bus tour duration and the arrival times can be con-
trolled within desired thresholds with certain confi-
dence levels. Therefore, combining (22) and (23) with 
the constraints in (16), we propose a stopping rule to 
determine the termination of the sequential simulation 
experiments by checking the following at the beginning 
of each time stage r:

Φ
log b� θr

σ

� �

≥ 1� β, (24) 

εi, 1�α=2 ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp Υi, r

χi, r � 1

� �

� 1
� �

exp 2Θi, r +
Υi, r

χi, r � 1

� �s

+ τ ≤ γ, ∀i ∈ N ∪ S,
(25) 

where εi, 1�α=2 is adaptively determined as at the begin-
ning of Section 3.4. Specifically, for any potential inclu-
sion of stops in S with policy π(τ), we will run at least 
rmin simulation experiments for the Bayesian learning 
model to warm up. Additionally, in practice, if σ2 is 
unknown, we can estimate it sequentially with σ̂2

r , the 
sample variance of log(T1), : : : , log(Tr), for each time 
stage r ≤ rmin, because the first rmin simulation experi-
ments are complete with no early termination. Then, for 
all r > rmin, we can simply replace σ2 with σ̂2

rmin 
in the 

updating equations. Meanwhile, we will also run at 
most rmax simulation experiments to prevent excessive 
computation. Then, starting from the (rmin + 1)st experi-
ment, we will immediately terminate the simulation 
experiment and deem the inclusion S with policy π(τ)
infeasible if Constraints (24) and (25) are violated in R 
consecutive experiments. Otherwise, if we can finish all 
rmax experiments with no R consecutive violations of 
(24)–(25), then we will deem the inclusion S with policy 
π(τ) feasible. Note that we impose R consecutive viola-
tions for concluding infeasibility to account for the 
numerical error due to the convergence of the Bayesian 
learning model. We repeat the abovementioned process 
by incrementing τ. Because τ�determines the number of 
downstream stops that a bus can skip, using a precision 
of less than one minute is not meaningful from a practi-
cal perspective as it would not impact the number of 
stops a bus can skip. Therefore, we treat τ�as an integer 
expressed in minutes and increment it by one in the 
algorithm. The entire procedure is summarized below 
in Algorithm 3.
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Algorithm 3 (Greedy Heuristic and Approximate Bayesian 
Updating for Stop Allocation)

Input: rmin, rmax, R, b, γ, α, β, W, C,
Output: S∗: selected stops S∗ ⊆ C; τ∗: optimized 
lookup period 
1: S∗ ← ∅; Jτ�1←∅; τ← 0; σ← 1; εi, 1�α=2← 0
2: Initialize Bayesian parameters θ0,υ0,Θi, 0,Λi, 0, 
χi, 0,Υi, 0

3: while εi, 1�α=2 ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

exp Υi, r
χi, r�1

� �
� 1

h i
exp 2Θi, r +

Υi, r
χi, r�1

� �r

+ τ ≤ γ, 
∀i ∈ I do

4: τ← τ+ 1
5: Generate passengers and determine set of stops 

skipped Jτ
6: if Jτ � Jτ�1 then continue
7: else
8: Jτ�1← Jτ; S←∅; r← 0
9: θr← θ0;υr← υ0; Θi, r←Θi, 0;Λi, r←Λi, 0;

χi, r← χi, 0;Υi, r← Υi, 0
10: repeat
11: r← r+ 1;
12: if r ≤ rmin then
13: σ2← σ̂2

r ; Update θr,υr,Θi, r,Λi, r,χi, r,Υi, r 

using (17) and (21)
14: end if
15: if r > rmin then
16: σ2← σ̂2

rmin
; Update θr,υr,Θi, r,Λi, r, 

χi, r,Υi, r using (17) and (21)
17: Calculate εi, 1�α=2 and check con-

straints using (24) and (25)
18: if Constraints are not satisfied for R 

consecutive experiments then break
19: end if
20: end if
21: until r � rmax
22: if r � rmax then
23: i∗ ← arg mini∈C\S

1
|W |

P
w∈W f (N ∪ S ∪ {i}, 

ξw(N ∪ S ∪ {i})),
24: S← S ∪ {i∗}
25: end if
26: if |S | ≥ |S∗ | then
27: τ∗ ← τ; S∗ ← S
28: end if
29: end if
30: end while
31: return S∗, τ∗

4.3. Computational Savings from 
Bayesian Approaches

We begin by demonstrating the computational efficien-
cies of our proposed approximate Bayesian approach as 
compared with traditional frequentist methods. To 
highlight the efficiency improvement, we conduct simu-
lations involving 10 bus route operations, with details 
to be elaborated upon later in the text. The results for 
each route are compared against those obtained using 
a frequentist approach, which consistently runs 100 

simulations for each candidate solution and estimates 
the objective function with SAA. Our Bayesian 
approach, employing compact sequential updates to 
incorporate the information of each new observation, 
rapidly converge to an accurate depiction of the under-
lying distribution. This efficiency translates to signifi-
cant computational savings, as demonstrated in Figure 
3. Regarding the number of simulation cycles, the 
Bayesian method takes only 30 simulation cycles on 
average, achieving a 69% reduction compared with the 
frequentist approach. Meanwhile, the frequentist 
method requires an average of 142 minutes in simula-
tion time, whereas the Bayesian method achieves simi-
lar accuracy using only 47 minutes on average, 
representing a 67.92% reduction in simulation time. The 
solution quality of the approximate Bayesian method 
for these instances is reported in Table 1. The difference 
between the walking distances from the Bayesian and 
frequentist methods averages around only 1.93%, which 
suggests that Bayesian method achieves a level of esti-
mation accuracy equivalent to that of the frequentist 
method. However, the simulation time required by the 
Bayesian method is significantly reduced (67.92% 
shorter on average) in contrast to the frequentist 
method, which demonstrates the efficiency of our 
sequential approximate Bayesian approach.

Furthermore, in addition to measuring the reduction 
in the number of simulation experiments relative to a 
frequentist approach, we also assess the efficiency 
improvement of our proposed approximate Bayesian 
framework in which early termination will be applied 
to the simulation runs if their bus tour exceeds the 
threshold b. To do so, we design a benchmark in which 
all simulation runs are complete without early termina-
tion, and thus all complete Tr can be observed with no 
censorship. Note that because all complete Tr are avail-
able in this benchmark, we no longer need an approxi-
mate Bayesian approach and can simply build a 
conjugate Bayesian learning model for T exactly the 
same way as for Gi in Section 4.2.1. This head-to-head 
comparison between the results from panels (a) and (b) 
of Figure 3 shows that, although both approaches 
required the same number of simulations to meet the 
termination criterion, our approximate Bayesian frame-
work with early termination was able to achieve a 
reduction of 2.1%–3.8% in the run time for individual 
simulations.

4.4. Maximizing Population Coverage for 
Increasing Demand

The previous discussion assumed a constant demand 
for transit, irrespective of the addition of new stops. 
However, in reality, the addition of new stops is likely 
to attract new passengers, which can affect the probabil-
ity of stops being skipped. As the number of passengers 
increases, the probability of skipping stops decreases, 
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which in turn reduces the number of new stops that can 
be added without exceeding the desired roundtrip 
duration. Therefore, it is important to consider the 
dynamic nature of demand and its impact on the feasi-
bility of adding new stops while maintaining an accept-
able bus tour duration. To this end, we consider another 
practical scenario in which additional demand is cov-
ered with each added stop. We adopt a simulation- 
based approach akin to that in Section 4.1, aiming to 
maximize population coverage by adding stops to an 
existing bus route. The same greedy solution method 
from Section 4.2 is used for this increasing demand case. 
The impacts and benefits from analyzing increasing 
demand are discussed in Online Appendix L.

5. Numerical Experiments of Analytical 
Derivations

In this section, we conduct empirical validation and sen-
sitivity analysis of our analytical derivations for the styl-
ized semiflexible bus transit system. Initially, we 
validate the derivations through a comprehensive simu-
lation model. Subsequently, we optimize the number of 
stops and conduct a sensitivity analysis.

5.1. Validation via Simulation
We validate the analytical derivations in (2)–(9) using a 
simulation model with the same parameters. This 
model simulated a bus navigating a circular route, 
addressing passenger demands at various stops, with 
the number of stops n ranging from 7 to 25 in the flexible 
system. The purpose of this simulation was to confirm 
the accuracy of the stylized model by comparing key 
metrics such as driving time, waiting time, tour dura-
tion, and the time savings from shortcuts.

In the simulation, a bus was allowed to complete 
1,000 cycles along the circular route, serving passenger 
demands that are uniformly distributed along the route. 
For validation, we systematically compared these key 
metrics between the analytical derivation and the simu-
lation across the specified range of stops. The results, 
which underscore the consistency between the simula-
tion outcomes and the derivations, are detailed in 
Online Appendix M.

5.2. Sensitivity Analysis
We optimized the number of stops and consecutive 
skips in the semiflexible system by solving the model 
(10)–(13) using Algorithm 1 for varying parameters. For 

Figure 3. (Color online) Performance of Bayesian Approaches for 10 Route Instances 

(a) Model with censored tour duration (b) Model without censored tour duration

Note. A paired t-test comparing the simulation cycle reduction achieved by the model with censored tour duration (69%) and the model without 
censored tour duration (69%) showed no statistically significant difference in mean values.

Table 1. Solution Quality Comparison for 10 Instances

Walking (ft/passenger) Time (mins) Gap (%)

Instance Frequentist Bayesian Frequentist Bayesian Walking Time

1 2,730.21 2,782.21 146.06 50.75 1.90 65.25
2 2,736.05 2,785.78 132.49 49.96 1.82 62.29
3 2,751.91 2,793.58 137.71 49.77 1.51 63.86
4 2,730.61 2,770.37 135.56 34.89 1.46 74.27
5 2,732.56 2,776.98 148.34 43.33 1.63 70.79
6 2,732.66 2,787.91 143.51 45.01 2.02 68.64
7 2,759.06 2,822.88 145.47 47.03 2.31 67.67
8 2,758.87 2,807.58 148.72 46.45 1.77 68.76
9 2,747.04 2,802.09 143.28 51.61 2.00 63.97
10 2,740.86 2,792.36 141.87 37.27 1.88 73.74
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this purpose, we considered a fixed bus transit system 
(System 1) running on a 15-mile circular route (equiva-
lent to a radius of 2.4 miles) with n � 5 stops as our base-
line. Assuming a speed of 25 mph and a dwell time of 30 
seconds at each stop, the bus tour duration for the fixed 
system was kept deterministic at 38.7 minutes, the maxi-
mum possible tour duration when all stops are visited. 
The passenger demand in the fixed system is uniformly 
distributed along the route.

Considering the impact of the passenger demand on the 
probability of skipping stops, we explored how varying 
the probability of a stop in System 1 not being used (p) 
affects the optimal solutions obtained from the optimiza-
tion model (10)–(13), while keeping other parameters con-
stant. The results of this analysis are depicted in Figure 4(a). 
Clearly, a decrease in p leads to more frequent use of exist-
ing stops and a lower likelihood of skipping them. This 
diminished scope for skipping stops consequently restricts 
the number of new stops that can be added, resulting in 
smaller values of (n∗, m∗). This observation highlights that 
the benefits of the proposed semiflexible system become 
more pronounced in scenarios with lower demand routes.

We also investigated the impact of the advance notice 
(γ) in (12) on the optimal solutions of the optimization 
model (10)–(13), while keeping other parameters con-
stant. As illustrated in Figure 4(b), longer advance notice 
allows for the implementation of more stops, leading to 
higher values of n∗ and m∗. This is logical, as larger values 
of γ�provide operators with more flexibility to skip stops, 
though this also requires passengers to plan their trips 
further in advance. Detailed representations of the feasi-
ble solution space and the optimal solutions for a range of 
γ�values are provided in Online Appendix N.

6. Allegany County Case Study: 
Simulation-Based Models

Allegany County is a sparsely populated county located 
in the western part of Maryland in the United States. 

With a population of around 70,000 people, the county 
has a relatively low population density, which is approxi-
mately 125 people per square mile (48 people per square 
kilometer). The county’s transit network includes 10 bus 
routes with different configurations (see Online Appen-
dix O). The route schedule and stop locations were 
extracted from General Transit Feed Schedule (GTFS) 
data (https://transitfeeds.com/). Additionally, automatic 
passenger counting (APC) data were mined to estimate 
average passenger demand at each stop, and the short-
cuts between stops were queried from the GraphHopper 
routing application programming interface (https:// 
graphhopper.com/).

In each route, we maintained all existing stops and 
considered 60 additional candidate locations for poten-
tial new stops in our simulation-based optimization. Ini-
tially, candidate stop locations were identified at the 
geographic midpoint between existing stops. The pro-
cess then proceeded by identifying additional candidate 
stops at the midpoints between these newly established 
candidate stops until a total of 60 candidate stops were 
included. Although the candidate stops are selected 
along the bus routes, their locations are not restricted to 
the bus route itself. Any location deemed suitable by 
the transit authority is a viable option for stop place-
ment. After applying simulation-based optimization, 
improvements were noted in the Blue, Red, and Yellow 
Lines. Other routes did not show improvement because 
of high utilization of existing stops (Figure 5(a)) or route 
configurations that do not allow for significant time sav-
ings from shortcuts when stops are skipped (Figure 
5(b)). The improved routes, which have lower demand 
rates as shown in Figure 5(a), allow for more frequent 
skipping of stops. Additionally, the layout of the 
improved routes (Figure 6) allows shortcuts that yield 
greater savings compared with routes with a straight 
configuration, which limit the potential benefits of 
bypassing stops.

Figure 4. (Color online) Sensitivity Analysis of the Optimal Solution for Different Values of p and γ�

(b) (n∗, m∗) for different γ(a) (n∗, m∗) for different p

Rahman et al.: Enhancing Underutilized Bus Routes 
Transportation Science, Articles in Advance, pp. 1–23, © 2025 INFORMS 15 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
6.

20
1.

22
2.

16
8]

 o
n 

19
 M

ay
 2

02
5,

 a
t 0

8:
36

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

https://transitfeeds.com/
https://graphhopper.com/
https://graphhopper.com/


The parameters used in our simulation experiments 
are detailed in Table 2. The simulations are run for at 
least 20 warm-up cycles before starting the Bayesian 
evaluation of constraints. After completing the warm- 

up cycles, if the Bayesian constraints are satisfied, the 
simulation is run up to 35 cycles before adding a new 
stop. The fixed system’s bus tour duration is determined 
based on the published schedule. To mirror real-world 

Figure 6. (Color online) Candidate Stops and Possible Shortcuts in the Improved Routes 

Figure 5. (Color online) Mean Passenger Demand and Shortcut Time Savings Distributions for Allegany County Routes 

(a) Mean passenger demand (b) Expected shortcut time savings

Note. FSU, Frostburg State University.
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scenarios, we calibrated the passenger demand at these 
stops to match with APC data. This ensured that the 
probability of skipping a stop in the simulation model 
closely resembles that in the APC data (see Figures 7–9).

6.1. Minimizing Walking Distance with 
Fixed Demand

In scenarios with fixed demand, we introduce new stops 
into the route, maintaining the same demand levels 
despite increased mobility. Consequently, we allocate 
all generated passengers to the nearest stops, ensuring 
comprehensive service coverage by the bus. In this spe-
cific scenario, our focus has been on adding new stops 
to minimize the expected walking distance, as outlined 
in Section 4.1. The outcomes of these route optimiza-
tions using Algorithm 3 are discussed further below.

Figures 10–12 demonstrate the effects of introducing 
a semiflexible transit system on the number of stops, the 
implementation of shortcuts, and their impact on walk-
ing distances across different amounts of advance notice 

for the improved routes, namely, the Blue, Red, and Yel-
low Lines. It is evident that extending the advance 
notice enables the bus system to bypass more stops and 
integrate more shortcuts. For example, when the 
advance notice is extended to 30 minutes, the number of 
stops on the Blue and Red Lines increases by approxi-
mately 160%, leading to a substantial decrease in pas-
senger walking distance by about 27%. In contrast, the 
Yellow Line shows a lesser increase, adding only four 
stops, primarily because of its straight layout, which 
limits the opportunities for taking shortcuts when stops 
are bypassed.

Tables 3–5 present a detailed comparison between the 
fixed and semiflexible bus systems operating on these 
lines, considering various amounts of advance notice 
while maintaining constant demand. For the Blue and 
Red Lines, the analysis indicates that the semiflexible 
bus systems, especially with longer advance notice (20 
and 30 minutes), offer significant benefits over fixed sys-
tems in reducing walking distances. Another benefit for 

Table 2. Simulation Parameters and Their Values

Simulation parameter Blue Line Red Line Yellow Line

Number of fixed system stops (N) 29 26 41
Fixed system tour duration (b) in min 100.75 119.43 112.50
Advance notice (γ) in min 10–30 10–30 10–30
Probability threshold (1� β) 0.80 0.80 0.80
Warm-up simulation cycles (rmin) 20 20 20
Maximum simulation cycles (rmax) 35 35 35
Number of candidate stops (C) 60 60 60

Figure 7. (Color online) Stop Locations on the Blue Line Based on APC and GTFS Data 

(a) Demand rates at merged APC stops (b) Histogram of passenger demand

Note. APC stops that are within the buffer of GTFS stops are utilized for adjusting passenger demand rates.
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Figure 8. (Color online) Stop Locations on the Red Line Based on APC and GTFS Data 

(a) Demand rates at merged APC stops

(b) Histogram of passenger demand

Note. APC stops that are within the buffer of GTFS stops are utilized for adjusting passenger demand rates.

Figure 9. (Color online) Stop Locations on the Yellow Line Based on APC and GTFS Data 

(a) Demand rates at merged APC stops

(b) Histogram of passenger demand

Note. APC stops that are within the buffer of GTFS stops are utilized for adjusting passenger demand rates.
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Figure 10. (Color online) Comparison Between the Current Fixed Transit System and the Proposed Semiflexible System with 
Varying Advance Notice and Fixed Demand for the Blue Line 

(a) Fixed system (b) 10 mins advance notice (c) 20 mins advance notice (d) 30 mins advance notice

Note. A simulation of the presented systems can be found at https://youtu.be/hK4zpgkyNxg.

Figure 11. (Color online) Comparison Between the Current Fixed Transit System and the Proposed Semiflexible System with 
Varying Advance Notice and Fixed Demand for the Red Line 

(a) Fixed system (b) 10 mins advance notice

(c) 20 mins advance notice (d) 30 mins advance notice

Note. A simulation of the presented systems can be found at https://youtu.be/lsX3fRUfWMU.
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Figure 12. (Color online) Comparison Between the Current Fixed Transit System and the Proposed Semiflexible System with 
Advance Notice and Fixed Demand for the Yellow Line 

(a) Fixed system

(b) 10 mins advance notice

Note. A simulation of the presented systems can be found at https://youtu.be/QRX9j_1ZtS4.

Table 3. Fixed vs. Semiflexible Bus System (Fixed Demand) for the Blue Line with Varying Notice

Semiflex system

Performance indicator Fixed system γ�� 10 min γ�� 20 min γ�� 30 min

Stops added — 17 29 46
Lookup period (τ∗) — 6 12 18
Mean tour length (min) 100.73 97.07 88.07 86.72
SD tour length (min) — 3.09 6.22 9.31
Walking (ft/passenger) 983.47 932.10 862.04 719.81

Note. SD, standard deviation.

Table 4. Fixed vs. Semiflexible Bus System (Fixed Demand) for the Red Line with Varying Notice

Semiflex system

Performance indicator Fixed system γ�� 10 min γ�� 20 min γ�� 30 min

Stops added — 15 25 43
Lookup period (τ∗) — 5 11 15
Mean tour length (min) 119.43 122.02 106.95 101.67
SD tour length (min) — 3.74 6.88 11.61
Walking (ft/passenger) 1,423.52 1,348.15 1,263.13 1,015.83

Note. SD, standard deviation.
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the passengers is that the passengers will spend less 
time on the trips because of shorter walking distances 
and reduced bus tour durations. Notably, the average 
tour duration in the semiflexible system is about 15–20 
minutes shorter than in the fixed system when the 
advance notice is extended to 30 minutes. Although 
there is more slack in the tour duration, which might 
suggest the possibility of adding more stops, the con-
straints on acceptable variance in arrival times at stops 
limit the addition of further stops.

6.2. Maximizing Service Coverage with 
Increasing Demand

In this scenario, we assume that demand will increase 
because of increased coverage from added stops; thus, 
new stops are allocated to maximize demand coverage. 
Specifically, passenger origins and destinations are ran-
domly generated based on the population within a 0.25 
square-mile area surrounding the bus route, as depicted 
in the buffer area shown in Figure 13(a). Once generated, 
passengers are assigned to their nearest bus stops, con-
sidering a maximum walking distance threshold of 0.125 
miles, visualized as circles in Figure 13(b). Passengers 
whose origins or destinations fall outside this threshold 

are deemed unable to use the bus. Excluding those 
beyond the walking distance threshold, we aggregate the 
origins and destinations within the threshold circle to 
determine the number of boarding and alighting passen-
gers at each stop. Given that each additional stop covers 
more demand in this scenario, we optimized the routes 
to maximize service coverage as outlined in Algorithm 3.

After optimizing the routes, the number of stops in the 
Blue and Red Lines is increased by about 38% when the 
advance notice is increased to 30 minutes, resulting in 
47% and 62% increases in the population coverage, 
respectively. In contrast, only two stops could be added 
to the Yellow Line, and the resulting improvement was 
not as significant as for the Blue and Red Lines; nonethe-
less, they still manage to increase the population cover-
age by 15%, which is even achievable using a 10-minute 
advance notice. It is noteworthy that the number of stops 
added in the increasing demand scenario is less than that 
of the fixed demand scenario. Because the addition of 
new stops is attracting more demand in this scenario, the 
bus is not able to skip as many stops, which results in a 
lesser number of stops than in the fixed demand scenario. 
The high-level summary and detailed analysis of the 
results are provided in Online Appendix L.

Table 5. Fixed vs. Semiflexible Bus System (Fixed Demand) for the Yellow Line with Varying Notice

Semiflex system

Performance indicator Fixed system γ�� 10 min γ�� 20 min γ�� 30 min

Stops added — 4 4 4
Lookup period (τ∗) — 4 9 13
Mean tour length (min) 112.50 112.30 111.68 110.14
SD tour length (min) — 4.59 8.51 12.28
Walking (ft/passenger) 1,674.13 1,636.43 1,636.43 1,636.43

Note. SD, standard deviation.

Figure 13. (Color online) Sample of Passengers Generated on the Red Line 

(a) Generated passengers in the buffer (b) Coverage of stops
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7. Conclusions
We introduced a novel semiflexible transit system in 
which passengers submit advance notices of their 
intended stops, allowing buses to bypass stops without 
passenger demand by taking shortcuts. This strategy 
facilitated the addition of more stops, thus enhancing 
mobility while maintaining operational efficiency. Spe-
cifically, we developed an optimization model aimed at 
maximizing the number of stops while ensuring that the 
bus tour duration remains comparable to conventional 
transit systems and reliably honoring advance passen-
ger requests, both with a high probability. This model 
enabled theoretical analysis of the problem, as well as 
efficient exploration of system design trade-offs and 
assessment of the impacts of various parameters on the 
number of stops and user experience. The theoretical 
analyses also motivated the application of heuristics 
and the evaluation of the derived constraints within a 
Bayesian learning framework to address more intricate 
scenarios.

To demonstrate the real-world application of our semi-
flexible routing strategy, we developed and applied 
simulation-based models to various bus routes in Alle-
gany County, Maryland, United States. Our analysis, cov-
ering a range of route configurations, revealed how the 
strategy’s advantages varied depending on each route’s 
specific characteristics. We observed considerable 
improvements in routes with underutilized stops and 
configurations conducive to shortcuts. In scenarios with 
fixed and increasing passenger demand, our simulation- 
based approach led to increases in the number of stops by 
approximately 160% and 38%, respectively, when the 
average probability of skipping existing stops was greater 
than 45% and had layouts conducive to substantial short-
cuts. By evaluating the performance of the semiflexible 
transit system on these routes, we have provided in-
sights into its effectiveness and feasibility, demon-
strating its potential to enhance bus routes with 
underutilized stops.
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