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In this paper, we aim to address a relevant estimation problem that aviation professionals encounter in their daily operations.
Specifically, aircraft load planners require information on the expected number of checked bags for a flight several hours prior to
its scheduled departure to properly palletize and load the aircraft. However, the checked baggage prediction problem has not been
sufficiently studied in the literature, particularly at the flight level. Existing prediction approaches have not properly accounted for
the different impacts of overestimating and underestimating checked baggage volumes on airline operations. Therefore, we propose
a custom loss function, in the form of a piecewise quadratic function, which aligns with airline operations practice and utilizes
machine learning algorithms to optimize checked baggage predictions incorporating the new loss function. We consider multiple
linear regression, LightGBM, and XGBoost, as supervised learning algorithms. We apply our proposed methods to baggage data from
a major airline and additional data from various US government agencies. We compare the performance of the three customized
supervised learning algorithms. We find that the two gradient boosting methods (i.e., LightGBM and XGBoost) yield higher accuracy
than the multiple linear regression; XGBoost outperforms LightGBM while LightGBM requires much less training time than XGBoost.
We also investigate the performance of XGBoost on samples from different categories and provide insights for selecting an appropriate
prediction algorithm to improve baggage prediction practices. Our modeling framework can be adapted to address other prediction

challenges in aviation, such as predicting the number of standby passengers or no-shows.
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1. Introduction

The air transportation system is a complex network of internal
and external entities that interact with one another in a variety of
ways. For example, passengers can choose from multiple flights
operated by competing airlines, airlines plan and schedule their
flights to minimize operating costs, and air traffic controllers
ensure safety and minimize delays for flights sharing the
airspace. The air transportation system is also affected by exter-
nal factors such as weather and socio-economic systems (Jardines
et al., 2021), which contribute to the generation of large and
intricate datasets. By analyzing these datasets effectively, there
is great potential for the aviation sector to undergo significant
transformation. The Next Generation Air Transportation System
(NextGen) is an initiative led by the National Aeronautics and
Space Administration (NASA) and Federal Aviation Administra-
tion (FAA) to use advanced data mining tools to identify safety
vulnerabilities across various types of data (NASA 2007). Outside
of air traffic management (ATM), airlines have also been known
for improving revenues by tailoring their services and products
to various customer segments based on analyses of their very
rich passenger booking data (Sun et al., 2018). This paper aims
to explore how advanced machine learning algorithms and
large-volume operational data can revolutionize conventional

practices in airline operations, with a particular focus on the
flight-level checked baggage prediction problem, to be defined
and analyzed next.

A few hours (e.g., three to four hours) before the departure of
a passenger flight, load planners need to decide what shipments
booked on this flight can be selected for loading or off-loading,
how selected shipments can be packed into unit load devices
(ULDs) or palletized, and how ULDs or pallets can be assigned
to different positions on the aircraft (Brandt & Nickel 2019).
Those loading decisions depend on how much checked baggage
to anticipate, whose exact amount only becomes available shortly
(such as 45 minutes) before the scheduled departure. Thus, the
expected number of checked bags must be estimated in advance,
to facilitate the aircraft load planning process where various
weight and balance limits should be enforced. For instance, the
maximum cargo (including checked baggage) to carry should be
jointly determined with fuel load subject to the takeoff weight
limit (FAA 2016). From the perspective of balance control, flight
safety concerns may arise from baggage issues. A shift in the lon-
gitudinal center of gravity, caused by improperly loaded baggage,
may result in unstable aircraft conditions or difficulty in con-
trolling the aircraft (FAA 2023). In addition, loading checked bags
can be time-consuming and labor-intensive. Having relatively
accurate checked baggage information would allow an airline to
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allocate appropriate human power to load checked bags on to an
airplane (BEONTRA 2022). In case of an unusually large number of
bags, the baggage loading process would be prolonged, thus likely
delaying a flight. While a good estimation of checked baggage is
highly desirable, itis difficult to achieve such a prediction because
the amount of checked baggage usually fluctuates substantially,
due to the influence of various factors, such as passenger trip
purposes and travel seasons.

A detailed literature review (to be presented in Section 2) indi-
cates that only a few studies have focused on the checked baggage
prediction problem and each of them has various shortcomings.
For instance, non-time-series data cannot be easily incorporated
into a time-series forecasting model for baggage prediction, as
in Ma et al, (2021). The primary shortcoming of the existing
literature is that the consequences of over-prediction and under-
prediction are treated equally, contrary to aviation practice. Mod-
eling the asymmetric effect is important in the context of baggage
prediction, as the cost of not having sufficient space to accommo-
date checked baggage is much higher than having a partially filled
checked baggage compartment.

In this study, we analyzed a checked baggage dataset consisting
of nearly one million samples owned by a major US airline. The
primary dataset was enriched by including additional features,
such as the population of a city and passenger enplanements of
an airport. Next, we performed necessary data cleaning and fea-
ture processing to avoid the negative impact of data irregularities
on the subsequent analyses and predictions. We introduced three
prediction methods: linear regression and two advanced super-
vised learning algorithms (i.e., LightGBM and XGBoost). We further
customized these by designing and incorporating an asymmetric
loss function. Some findings from the experiments are high-
lighted as follows: (1) LightGBM and XGBoost can achieve a much
better predictive performance than linear regression regardless
of whether the asymmetric loss function is considered or not,
while XGBboost slightly outperforms LightGBM; (2)LightGBM is
significantly more efficient than XGBoost; (3) the predictive per-
formance of XGBoost is not uniform over destination airports or
fleet types due to uneven training data coverage.

To the best of our knowledge, this is the first flight-level
checked baggage prediction study considering an asymmetric
loss function. This study also demonstrates the great potential
of state-of-the-art machine learning algorithms in modernizing
some conventional practices in airline operations with large-scale
real-world data.

The rest of this paper is organized as follows. Section 2 briefly
reviews some machine learning applications in air transportation.
We next describe in Section 3 how exploratory analyses of the
datasets are conducted along with data cleaning and feature
engineering. Then, in Section 4, multiple prediction methods of
various complexities are introduced and the asymmetric loss
function is presented. Experiments are conducted and major
results are reported in Section 5. A discussion of how to choose
an appropriate baggage prediction algorithm is presented in Sec-
tion 6. Lastly, concluding remarks and future research directions
are given in Section 7.

2. Literature review

We divide related machine learning applications in air transporta-
tion into two broad categories: flight-related and payload-related.
In the first group, we mainly review those predictive studies
on aircraft trajectory and flight delay; in the second group, we

focus on those studies on passenger, cargo, and checked baggage
predictions.

2.1 Flight-related problems
2.1.1 Aircraft trajectory prediction

In traditional ATM, controllers only need to know the currentloca-
tion of aircraft, while under the new trajectory-based operations
(TBO) paradigm, controllers require information on the future
location of aircraft as well (Mondoloni & Rozen 2020). This is
where four-dimensional (4D) trajectory prediction (TP) is needed
(Wang et al., 2020; Wu et al., 2022). This involves predicting an
aircraft’s longitude, latitude, altitude, and time, and is crucial
for improving air traffic safety and ATM efficiency under TBO.
This is because an aircraft’s actual trajectory can deviate from
its planned route due to various factors such as congestion and
weather conditions. Trajectories can be predicted either in the
short term (in-flight) or long term (pre-flight). Two representative
studies are reviewed next.

In a short-term predictive study, Gallego et al., (2019) proposed
a measure of probabilistic interdependence for pairs of aircraft,
which they used as a feature to predict the vertical profiles
of aircraft trajectories during the descent phase of flight. Their
study employed data from the Barcelona Air Traffic Control Cen-
ter in Spain and demonstrated the usefulness of their neural
network methods. The researchers concluded that incorporating
the proposed interdependence measure enhanced the accuracy
of trajectory prediction. In contrast, Wu et al.,, (2022) focused
on predicting the 4D trajectory of an aircraft prior to takeoff
using historical trajectory data. To achieve this, they converted
historical time-series data into images and used various types of
generative adversarial networks (GANS) to generate new images,
which were then transformed into time-series data or flight tra-
jectories. The study used data from flights between Beijing and
Chengdu in China and compared different GAN variants based
on training time, prediction time, and prediction accuracy. The
researchers found that the one-dimensional convolution variant
of GAN produced the best results.

2.1.2 Flight delay

The issue of flight delays has a significant impact on airline
operations and customer satisfaction, leading many researchers
to focus on predicting flight delays using machine learning. For
example, Khan et al,, (2021) observed that current flight delay
classification systems use multiple threshold prediction classi-
fiers running in parallel, which can lead to conflicting results
and ambiguity. Instead, they proposed a sequential approach to
predicting whether flight delays exceed certain thresholds by
considering only part of the data. They demonstrated their pre-
diction algorithms with a case study of an airline based in Hong
Kong. In contrast, Rodriguez-Sanz et al., (2019) used a Bayesian
network approach to predict delays for the arrival systems of an
airport. They also conducted a reliability analysis using a Markov
chain approach to evaluate the system'’s reliability. Their model
can adaptively capture the stochastic characteristics of arrival
processes. As it is beyond the scope of this study to further review
those flight-related machine learning studies, interested readers
are directed to Chung et al., (2020).

2.2 Payload-related problems

2.2.1 Passengers and air cargo

Passengers account for the majority of payload on commer-
cial flights. Passenger demand predictions have been con-
ducted at different levels, such as the national or airport level.
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Xu et al., (2019) combined seasonal autoregressive integrated
moving average (SARIMA) and support vector regression (SVR)
for the prediction of several aviation metrics for China’s
aviation industry, such as domestic and international passenger
miles. They used 133 observations between February 2005 and
February 2016 to predict values from March 2016 to February
2018. While such predictions at a national level are useful for
strategic planning purposes, other researchers have focused on
operational problems at a lower level. For instance, to dynamically
optimize the configurations of airport security screening lanes,
Hanumantha et al., (2020) proposed an ensemble forecasting
model, which was tested in a case study of Phoenix Sky Harbor
Airport.

It is also very common for passenger flights to carry air cargo,
which is organized using pallets or ULDs that are loaded into
the belly of the fuselage under the passenger compartment. Such
cargo space is shared by air cargo and checked baggage, while the
latter has priority over the former. This implies that the available
belly space for air cargo is uncertain. Therefore, Tseremoglou
et al., (2022) used long short-term memory networks (LSTMs)
to predict available cargo space. They then solved a real-time
booking acceptance problem with the predicted values as inputs.
Their experiments indicated that their proposed method can
significantly increase loaded volume while decreasing unplanned
offloading. A comprehensive review of the application of machine
learning in air cargo management can be found in Barua et al,,
(2020).

While predicting cargo and passenger demand seems similar,
the information provided by cargo tracking and passenger service
systems could be quite different, implying that models for pas-
sengers and air cargo are not immediately transferable. Gender,
age, and travel purpose are examples of common passenger char-
acteristics that do not apply to cargo predictions.

2.2.2 Checked baggage

As the most relevant ones to this study, a few papers tried to
predict the amount of checked baggage. Accurate prediction of
checked baggage is fundamental for reasonable resource alloca-
tion to prevent the overloading of the baggage handling system
(Ma et al,, 2021) and to allocate staff resources (BEONTRA 2022).
A SARIMA model was adopted by Ma et al., (2021) for checked
baggage prediction at the airport level. Based on the historical
baggage volume covering eight weeks, the demand for the sub-
sequent three days was predicted. They quantified the predictive
ability with some metrics but no alternative models were involved
for benchmarking purposes. Mikram et al., (2020) also adopted
the ARIMA model to forecast the baggage volume and found that
the Box-Jenkins approach and exponential smoothing methods
can improve the accuracy. One shortcoming of these time-series
models is that they rely on time-series data only, which implies a
lot of available passenger-related characteristics cannot be incor-
porated. In addition, those predictions are intended to be at the
airport level, rather than the flight level.

Cheng et al.,, (2014) forecast the baggage volume for each
flight from an international terminal using a back propagation
neural network and multiple linear regression (MLR). Numerical
experiments on three datasets of various sizes were conducted.
Only five features were involved: passenger count, flight date,
flight type, departure time, and flight duration. This study had
a quite limited sample size. In predicting the baggage amount for
a single flight, only 29 samples were used, among which 21 were
for training and 8 were for testing. The entire dataset covering all
flights had 3,040 samples. Given the limited number of features

and sample size, the resulting R? is also quite low (i.e,, slightly over
0.5).

The identification of mishandled bags was studied by van
Leeuwen et al., (2020) using a Gradient Boosting machine, which
was not reviewed in detail due to its low relevance.

2.3 Summary

The large amount of data generated in the aviation industry has
led to extensive developments of machine learning algorithms
for aviation transportation management (Xu et al., 2024). A good
variety of aviation problems have been studied with machine
learning (Chung et al.,, 2020). However, only a few studies were
for predicting the amount of checked baggage. A shortcoming
in the time-series models for checked baggage prediction is that
the impact of many non-time-series data on passenger baggage
volume cannot be incorporated. More importantly, none of those
studies has explored an asymmetric loss function in predictive
analyses. This paper is distinguished from those studies by pre-
senting a flight-level checked baggage prediction method based
on the customization of advanced machine learning algorithms.
Another strength of the paper lies in the large-scale and multi-
source datasets covering a whole country being analyzed in this
study.

3. Data
3.1 Data sources and overview

The flight baggage dataset used in this study was obtained from
a major US airline, referred to as Airline 2 for confidentiality pur-
poses due to the non-disclosure agreement. The dataset consisted
of 926,395 domestic flights operated by the airline in 2019, pre-
dating the COVID-19 pandemic. Each row in the dataset repre-
sented a flight on a specific day, with operational details and
aggregated passenger counts being available. The dataset con-
sisted of 22 features related to flights, including flight num-
ber, departure and arrival date and time, origin and destination
cities, aircraft type, leg distance, and the total number of onboard
passengers. Additionally, there were 27 other features related to
passenger characteristics, such as payment type, presence of a
child or infant, booking method, and cabin class. Airline A also
categorized their passengers based on their loyalty status and
predicted travel purposes by other undisclosed algorithms. All
those passenger-related features combined presented valuable
insights into understanding who those customers were, why they
traveled, and how they checked bags. The dataset contained a
single target variable, which was the number of checked bags on
each flight.

While the baggage dataset from Airline A was essential, addi-
tional data were obtained to enhance the predictive performance
of machine learning algorithms. This was because the baggage
dataset did not have key information about airports, cities, and air
travel trends over time. For instance, the baggage dataset itself did
not provide any information on how the population of Houston,
Texas compared with that of Omaha, Nebraska; it did not tell how
the Reagan National Airport’s enplanements differed from the
Dulles International Airport serving the same metropolitan area;
it did not properly reflect the difference between Thanksgiving
travels and New Year travels. Therefore, the following new fea-
tures were added: city population from US Census Bureau (2021),
annual enplanements by airports provided by FAA (2022), and the
Transportation Security Administration (TSA) checkpoint travel
numbers (TSA 2022). Figure 1 shows the ten busiest airports in
2021 by enplanement as well as the population of the city served
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Figure 2 TSA checkpoint travel numbers in 2019.

by an airport. By enplanement, Atlanta Airport was followed by
the Dallas and Denver airports. As no enplanement data were
found for 2019, and to avoid considering the disruptions of the
COVID-19 pandemic in 2020, the 2021 data were used instead. For
the TSA daily count, historical data were found for 2019 and thus
used. Figure 2 shows the TSA checkpoint travel numbers in 2019,
displaying the air travel peaks in summer months, especially July
and August, as well as off-peaks in February and September.

3.2 Data cleaning

According to Airline A, the baggage dataset was real and unaltered.
Although we did not find any missing values or duplicate records,
some irregularities in the data were identified. Therefore, we used
the following procedure to clean the baggage dataset. First, any
rows with negative passenger counts were dropped. Second, if the
aggregated passenger count over different categories exceeded
the total count, relevant data were dropped. For instance, if the
number of local and connecting passengers exceeded the total
number of onboard passengers, the corresponding sample was
removed. Similarly, the number of passengers in the main cabin
cannot be greater than the total passenger count. Third, if the
passenger and bag counts were conflicting, relevant data were

Date

removed. For instance, certain flights had a few—even zero—
passengers while carrying over a hundred checked bags. If either
the passenger or bag count was lower than ten, we removed such
flights as outliers. After data cleaning, 722,556 records remained.

3.3 Data explorations

We next conducted several exploratory analyses to illustrate
some important relations in the baggage dataset, which would
have been hidden otherwise. Figure 3 shows how the target
variable varies with two passenger-related features, namely the
number of paying passengers and the number of main cabin
passengers, as well as the histograms for those two features.
In Fig. 3, the solid line represents the average bag count while
the standard deviation of bag count is visualized by the buffer
zone along the solid line. Those two solid lines seem very similar
because of a high correlation between those two corresponding
features. The majority of passengers pay for their travels, thus
classified as paying passengers, and opt for the main cabin,
thus classified as the main cabin passengers. While the ratio of
revenue passengers to main cabin passengers varies, the average
ratio is 0.9. It is also evident that as the number of passengers
grows, the number of bags grows in general, especially before the
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number of revenue passengers hits 196. When there are more
than 196 passengers on a flight, the relation between the bag
and passenger counts is no longer smooth and the standard
deviation also increases. The cutoff line represents the capacity
of the largest narrow-body airplane used by the airline. Wide-
body aircraft are capable of carrying more passengers than 196,
while they are used for only 1.85 per cent of all the flights in
the dataset, as shown in Fig. 4. The two histograms in Fig. 3 also
indicate very few observations for wide-body aircraft. Given the
limited sample size for wide-body aircraft, the bag-passenger
relation is not characterized adequately by the current data. It
is also notable that when the number of paying passengers is
within 10, the bag count is nearly 50, implying an unusually large
bag-to-passenger ratio.

Figure 5 indicates that wide-body aircraft carry significantly
more checked bags as expected. Figure 6 presents the distribution
of load factor, i.e., the total number of passengers divided by the
aircraft capacity, which shows that in most cases, aircraft are
nearly fully loaded.

We next explore how the counts of bags and passengers vary
over time at different granularity levels (i.e., month, day of the
week, and hour of the day). The way in which the bag count varies
over months is very similar to the national air travel trend shown

© Narrow-body

Number of bags

Wide-body
400 A

300 -

200 A

Number of bags

100 A

0 50 100 150 200 250 300
Number of passengers

Figure 5 Number of bags by aircraft type.

in Fig. 2. From Fig. 7, we observe more bags in summer months,
such as June and July, while fewer bags are observed in September
and October. In December, the bag count is the highest. This could
be partially affected by school terms. For example, there might be
more family travels for recreational purposes over the summer
and winter breaks, contributing to the surges in bag. Figure 7
further shows that there are more checked bags on Saturday and
Sunday flights and fewer on Wednesday and Thursday. As Airline
A did not operate any flights around 3 a.m. and 4 a.m., there is a
gap in how the bag count varies with the hour of the day in Fig. 7.
Flights carried fewer bags around midday and more bags close to
midnight. This pattern may reflect a combination of operational
scheduling by airlines and passenger preferences, with late-night
flights possibly accommodating more long-haul or international
travelers who tend to check in more baggage. Additionally, the
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trend of increased baggage volumes close to midnight could be
influenced by passengers choosinglate-night flights for economic
reasons or personal scheduling needs.

Figure 8 shows how passengers booked their tickets over time,
for an example flight from a major hub (pseudonymized as Hub1)
of Airline A to New York City and a selected aircraft type Boeing
737. Approximately, 30 per cent of passengers booked their tickets
one month in advance, and 65 per cent of passengers booked at
least one week in advance. At the time of departure, 83.2 per cent
of tickets were sold, which was close to the average load factor
shown in Fig. 6.

Collinearity refers to a linear relationship between two or
more predictor variables. This issue would become a concern in
some regression models as the significance level of both variables
will dramatically decrease and the estimated coefficients of the
predictors are unstable (Wold et al., 1984). This issue was detected
in the baggage dataset because the number of leisure passengers
was presented twice. The first estimate was likely to have been
obtained from the booking data while the second estimate was
obtained with an ‘improved’ classification algorithm used by Air-
line &. The two estimates were highly correlated, with a Pearson’s
correlation coefficient of 0.97. Therefore, one of the two variables
was removed. Similarly, one variable related to business travelers
was dropped.

3.4 Feature encoding

The baggage dataset consisted of many categorical variables,
because quite a few time- and location-related features were
involved, such as month, hour, day of the week, and airport code. If
one-hot encoding was directly employed for all those categorical
features, the number of additional dummy variables would be sig-
nificant, especially when a categorical variable has many levels.
For instance, when we examine the origin airport as a categorical
variable, if there are 100 airports, the same number of dummy
variables is needed with one variable corresponding to one airport.
To avoid introducing too many additional features, we combined
some levels for selected categorical features as shown in Table 1,
mainly based on the data explorations described earlier. Hubs 1,
2, and 3 represent the three busiest hubs in the dataset, mea-
sured by the number of flights. Similarly, the encoding for the
‘hour’ feature into specific groups is informed by our analysis
of operational patterns and baggage volume trends at airports.
Specifically, we observed a consistent increase in baggage volumes
during the hours of 0, 1, 2, and 23, as shown in Fig. 7(c). To protect
the confidential and proprietary information of Airline A, specific
names of those hubs are not revealed, while this anonymization
does not hurt the rigor and usefulness of this analysis.

Table 1. Grouping for categorical variables.

Categorical Level grouping

feature

Origin hub [Hub1], [Hub2], [Hub3], [Others]
Destination hub [Hub1], [Hub2], [Hub3], [Others]
Aircraft type [330, 767,777, 787], [Others]

Day of the week [Wednesday, Thursday], [Monday, Sunday], [Others]
Hour [0, 1,2, 23], [Others]
Month 19, 10, 11], [6, 7], [12], [Others]

Appendix A lists all features considered in the following pre-
dictive analyses. Specifically, 22 features are flight-related, 27 are
related to passengers, and five are supplementary.

4. Methodology

In this section, we describe three machine learning algorithms to
predict the checked baggage volume y given attributes x, namely
all features listed in Appendix A. Section 4.1 will describe the
basic modeling propositions. Sections 4.2-4.4 will describe three
predictive algorithms.

4.1 Basic modeling propositions

In machine learning, an unknown prediction function f(x) that
relates x and y is identified, using its N noisy observations,

vi=fx)+e,i=1,...,N, (1)

where y; and x; are the dependent and explanatory variable values
for the ith observation, respectively, ¢ is independent noise with a
mean of zero and variance of 6%, and N is the sample size. For f(x),
we consider MLR as the baseline benchmark, which is described
in Section 4.2. We next consider two gradient boosting methods
in Sections 4.3 and 4.4. We seek to find the best model f(x) that
minimizes the training error:

N
J() =D e @),y (2)

i=1

Here, Z(f(xi),yi) is a loss function that quantifies the cost of
making the predictionf(xi), which can be abbreviated as J;, when
yi is the actual value.

As for the loss function £(-), we consider the business costs
related to the prediction inaccuracy. In airline operations, the
business cost of underestimating checked bags is significantly
higher than the cost of overestimation. In the case of under-
estimation, insufficient human power is allocated for loading
checked bags, thus resulting in possible departure delays. Or
there might not be enough storage room for checked bags on the
departing airplane, which means customers may spend additional
time waiting for their checked bags to arrive on another flight.
Delayed bags may need to be shipped to customers’ homes at a
high cost. In the case of overestimation, the cargo compartment
is partially filled, which incurs some opportunity cost, because
some cargo shipments should have been loaded if an accurate
count of checked bags has been estimated. To properly consider
this cost asymmetry, we design the following piecewise quadratic
loss function:

e, y) = 20—y + 201 - k. (3)
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Figure 7 Passenger and bag counts over time.
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Figure 8 Cumulative number of tickets sold before departure (Hub1 to
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In Equation (3), the subscript ‘+ in (¥; — yi)+ means only the
positive part of (y; — y;) is taken. For y; < y;, 0 is used. ¢, and
¢, are the overestimation and underestimation cost coefficients,
respectively. When ¢, and ¢, are assigned different values, over-
estimation and underestimation are penalized differently. The c,
to ¢, ratio depends on how likely it is that the space or weight
allowance for checked baggage is exceeded for a flight. When the
likelihood is relatively low, the coefficient for underestimation c,
should be relatively low while still being greater than ¢,. When the
checked baggage allowance is frequently exceeded, ¢, should be
significantly larger than c,. As this likelihood varies over time and
with flights, an airline should carefully determine the ¢, to ¢, ratio
to be consistent with their own operations.

4.2 Simple benchmark: multiple linear
regression

We first consider an MLR model that assumes a linear relation
between features x and the main response y. As MLR has been
studied rigorously for many decades, it has been applied in many
practical contexts of business and engineering. The major reason

for considering this is to explore the simplest possibility that gives
the smallest risk of model overfitting. Another benefit of MLR
lies in its interpretability. The estimated linear coefficients are
straightforward to interpret as the main effects of exploratory
variables. An MLR model is formally described as

fx)y=a"x+Db, 4)

where a and b are the model parameters.
In this study, the asymmetric loss function J(f) for MLR model
can be expressed as

N
Minimizeq; Jf) = > %O(aTxi +b—y)2 + %(yl- —a'x;—b2. (5)
i=1

To minimize this cost function, gradient descent is used. The
gradient descent algorithm is an iterative optimization algorithm
that works by starting with an initial set of regression coefficients,
a and b, and iteratively updating them in the direction of the
steepest descent of the cost function, which is given by the
negative gradient of the cost function,

a=a—n-VaJ{)
N (6)
b=b—n-VJ(),

where 5 is the learning rate, which controls the step size of
the update. Specifically, we can derive the partial derivatives of
the loss function with respect to the parameters a and b as
follows:

s a1 7 T
vaJ(f) = e = NZ:{co(a X +b—y)+ —culy;—a xl-—b)+}xi; 7)
i=1

aph 1

N
ViJ(f) = b =N D c@xi+b-y)s —cuyi—a'xi—b),. (8)
i1
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The procedure continues until the cost function converges to a
minimum, i.e., until the norm of the gradient becomes sufficiently
small or until a maximum number of iterations is reached. As a
result, a set of regression coefficients that best match the data is
provided by the gradient descent process.

4.3 Proposed approach with extreme gradient
boosting

We also consider extreme gradient boosting (XGBoost). It is a
variant of gradient boosted decision trees (GBDT; Chen & Guestrin
2016). Like GBDT, its underlying model is an ensemble of decision
trees (DTs),

M
f& =" fnx),

m=1

where f,,(x) represents the mth DT model, and M is the number of
DTs in the ensemble. The M DTs are learned sequentially, and the
mth DT model f,, is learned at the mth stage of sequential learning.
For the first stage, the first decision tree f; is fitted to the original
training data {(x;,y:),1 = 1,...,N}. For the mth stage, the mth DT
fm 1s fitted to the residual from the (m — Dth stage. Let """ =
22”2"11 fo(x) represent the fit obtained up to the (m— 1)th stage. DT
fm 1s fitted to {(xi, Vi —j/fm’l))}. Such sequential stacking of multiple
DTs can be easily overfitted. To avoid overfitting, XGBoost applies
a model regularization. Specifically, the mth iteration of XGBoost
fits f, to the residual y; — f/l(m’l) by minimizing the following
objective function,

N
L™ =30 (=3 fn)) + 2, ©)
i=1

where | is a differentiable convex loss function, which is typically
a negative log-likelihood for classification problems or the mean
squared error for regression problems. The regularization term
Q(fm) that penalizes the complexity of the mth tree is defined as

1 Jm
Q(fn) = yIn+ 52 > (10)

j=1

where J is the number of leaves in DT fn, w;j is the complexity
score of the jth leaf, and constants y and A determine weights on
the two terms in the regularization term. For computational fea-
sibility, Chen & Guestrin (2016) developed a second-order approx-
imation to the objective function Equation (9) as

= X 1
LM~ [K(Yi: ) + gifm(x0) + §hif3n<xl->} +Qfm), (1)
i=1

where g; = oo l(y;, 7™ P) and h; = aﬁm,hl(yi,y(m*”) are first- and
second-order gradients of the loss function I(y;, 7™ ). We derive
the derivatives for the asymmetric loss function:

N
gi =2 Coli =Y+ = i = Y+ (12)

i=1

N
hi =" i —y0% — culyi — - (13)

i=1

After removing the constant terms in Equation (11) and
expanding Q(fy,), the objective function is written as

N Jm

~ 1 1

.y [ng (x) + Ehﬁ(xi)] + I+ 53D W
= j=1

(14)

- J%: |:(Zgi)wj + %(Zhi +A)w}2:| Vs

1€l i€l

where I; = {i | q(x;) = j} is the data samples in leaf j. After
creating the second-order approximation of the objective func-
tion, XGBoost proceeds to build the model by adding trees to
the ensemble. At each iteration, the algorithm calculates the
leaf weights that minimize the objective function for the newly
added tree. This process of adding trees continues until a stopping
criterion is satisfied, which is often determined by the validation
error. This criterion prevents overfitting of the model and ensures
that the algorithm can generalize well to unseen data.

4.4 Proposed approach with light gradient
boosting machine

Another approach we consider is the light gradient boosting
machine (LightGBM), an efficient and scalable implementation
of gradient boosting framework (Ke et al., 2017). LightGBM is
known for its high efficiency, low memory usage, and its ability
to handle large-scale data. The core algorithm is similar to
that of XGBoost, but with some distinct features that enhance
performance, particularly on large datasets.

LightGBM builds the model in the form of an ensemble of
decision trees, similar to XGBoost,

f@) =" fn), (15)

where f,(x) represents the mth decision tree model, and M is the
total number of trees.

Two unique features of LightGBM are its gradient-based one-
side sampling (GOSS) and exclusive feature bundling (EFB), which
reduce the amount of data and number of features without sig-
nificant loss of accuracy. The GOSS method focuses on instances
with larger gradients, as they are considered more informative,
while EFB effectively reduces the number of features by bundling
mutually exclusive features.

The training process involves minimizing a similar objective
function as XGBoost, with a loss function and a regularization
term. However, LightGBM uses histogram-based algorithms for
computing the gradients, which significantly speeds up the learn-
ing process. The objective function is defined as

N
L=>"ey,i)+ (), (16)

i=1

where £(y;, ;) is the loss function, §; is the predicted value, and
Q(f) is the regularization term.

The loss function can be tailored to our specific problem,
considering the asymmetric cost of underestimation and
overestimation as previously described. The regularization term
helps to control the complexity of the model and prevent
overfitting. The algorithm iteratively builds trees, each focusing
on correcting the errors of the previous ensemble.
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Figure 9 Histograms for residuals under symmetric loss.

To optimize the LightGBM model, we employ a similar gradient
descent strategy as described for the MLR model, with the objec-
tive of minimizing the asymmetric loss function. The LightGBM
framework offers several hyperparameters such as the number of
leaves, the learning rate, and the maximum depth of trees, which
we can tune to achieve the best model performance.

In summary, LightGBM offers an efficient and effective
approach for predictive modeling in large-scale data scenarios.
Its ability to handle large datasets with a high speed and lower
memory consumption, while providing high accuracy, makes it
a suitable choice for our predictive analysis of checked baggage
volume.

5. Results

5.1 Comparison of MLR and LightGBM under
symmetric loss

We first compare MLR and LightGBM without considering an
asymmetric loss function. In other words, we assumec, = ¢, = 1in
this section. A standard hold-out testing method is adopted where
75 per cent of the samples (541,917 samples) are in the training
dataset and the remaining 180,639 samples are in the testing
dataset. Figure 9 compares the residual distributions for MLR and
LightGBM. In Fig. 9, the mean residuals for LightGBM and MLR are
virtually the same and close to 0. The standard deviation of MLR
is 17.6, which is greater than 14.9 for LightGBM. This is consistent
with the finding that the R? value achieved with MLR (0.79) is
clearly lower than that of LightGBM (0.85). The scatter plotin Fig. 9
shows that the residuals for MLR are more dispersed than those
for LightGBM, a further sign of weaker prediction performance.
While a considerable number of residuals are outside of the
range [—30,30] for MLR, significantly more LightGBM residuals
are within the range. For MLR, when the true bag count is below
100, residuals tend to be negative (i.e., underprediction); when
the true bag count is over 100, residuals tend to be positive (i.e.,
overprediction). For LightGBM, the correlation of residuals and
true values is lower. Note that the residuals from only 1 per cent of
all the testing samples are shown in Fig. 9 to avoid overcrowding.

With 0.5 per cent of testing samples drawn, the quantile-
quantile plotin Figure 10 indicates that the residuals of LightGBM
and MLR largely follow a normal distribution, as most of the points
fall approximately on the 45-degree reference line. This further
indicates that MLR captures the underlying relation between
various features and the target variable quite well.

The above comparisons suggest that the advanced LightGBM
outperforms the standard linear regression model. LightGBM has
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Figure 10 Quantiles of residuals of MLR and LightGBM.

multiple advantages over MLR. First, LightGBM, being a tree-
based method, can naturally model these non-linear relation-
ships, making it more effective for complex datasets. Second,
LightGBM automatically captures interactions between features
through its hierarchical tree structure. Lastly, LightGBM is more
robust to outliers as decision trees split the data based on certain
conditions, reducing the influence of extreme values.

We further note that for both methods, if the true value is
smaller than 50 or larger than 200, it is quite challenging to predict
the true value accurately, as shown in Fig. 9. The primary reason
is that there are no adequate training data in those bag count
ranges to understand the relation between the bag count and
other features as stated earlier. For instance, wide-body aircraft,
which can accommodate more than 200 passengers, are severely
under-represented (accounting for only 1.85 per cent of samples),
as shown in Fig. 4.

5.2 Comparison of three methods under
asymmetric loss

We next compare the three methods when an asymmetric loss
function is considered. We use the same hold-out testing method
described in Section 5.1. To model the degree of asymmetry, we
set ¢, to be 1 while considering four values for c,: 1, 5, 10, and
15. When ¢, = ¢,, the asymmetric loss function reduces to a
symmetric one. As the value of ¢, increases, the penalty for
underestimation grows. The XGBoost hyperparameters are tuned
by Bayesian optimization (Snoek et al., 2012). The hyperparameter
tuning process has 100 iterations. A hold-out strategy is used
that aims to minimize the sum of asymmetric loss function
values over testing samples. After hyperparameter tuning, values
of some key hyperparameters of XGBoost are: learning rate =
0.1, maximum tree depth = 6, minimum sum of instance weight
(hessian) needed in a child = 19, and subsample ratio = 0.8.
While using more estimators leads to better performances, the
number of estimators is configured as 600 because no signifi-
cant improvements are observed by increasing this value. As the
XGBoost API supports multi-threading, the number of threads is
configured as the maximum value, namely 16. Similar to XGBoost,
the hyperparameters for LightGBM are also tuned using Bayesian
optimization. Key LightGBM hyperparameters include a learning
rate of 0.1, a maximum depth of 6, and 31 leaves per tree, which
is a default yet effective choice for LightGBM. The number of
estimators is kept the same as XGBoost at 600. The subsample
ratio is set at 0.8, aligning with the XGBoost set-up. The LightGBM
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Figure 12 Effect of ¢, on LightGBM residual distribution.

model is configured to use all available cores to ensure efficient
computation.

Figures 11, 12, and 13 compare the residual distributions of
MLR, LightGBM, and XGBoost, respectively. Clearly, the distribu-
tions of XGBoost and LightGBM are tighter than MLR. The stan-
dard deviations of the residuals of XGBoost and LightGBM are
around 15 while MLR yields a larger standard deviation of 17.6
when ¢, = 1. This means that XGBoost and LightGBM outperform
MLR when a symmetric loss function is considered. As ¢, increases
from 1 to 10, the distribution of residuals shifts to the left and the
standard deviation of residuals increases, for all three methods. As
cy increases further to 15, the change in the mean and standard
deviation of residuals becomes relatively small. This means that
the impact of a growing ¢, on the residual distribution diminishes.
While ¢, increases from 1 to 15, XGBoost and LightGBM have a
consistently better predictive performance than MLR judged by
the distribution of residuals. When ¢, increases from 1 to 15, the
R? of MLR decreases from 0.79 to 0.56; LightGBM is capable of
achieving a high R? consistently, although it decreases from 0.85
to 0.71; XGBoost performs similar to LightGBM, with R? of 0.85 to
0.72.

We briefly show why R? decreases as coefficient ¢, in the asym-
metric loss function increases. The coefficient of determination
(i.e., R?) is defined as

5.\2
R =1 2N 17
20— )2 a7)

R? can be rewritten as

MSE

RP=1-
Var(Y)

(18)
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Figure 13 Effect of ¢, on XGBoost residual distribution.
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by noting the definitions of mean squared error (MSE) and vari-
ance MSE = X(y; — y»? and Var(Y) = > (yi — y»)?.

As the variance of the target variable is a constant, it is clear
that R? is a standardized or rescaled MSE. In particular, a larger
MSE leads to a smaller R?. As an asymmetric loss function is
adopted in training the learning algorithm, the asymmetric loss is
the optimization objective, rather than MSE (a symmetric metric).
In the special case where ¢, = 1, asymmetric loss reduces to
symmetric loss, which means minimizing an asymmetric loss
gives the minimal MSE, and thus the highest R%. As ¢, increases,
underestimation is more heavily penalized than overestimation,
which means the predictive algorithm will overestimate, thus
directly hurting MSE (becoming larger) and R? (becoming smaller).
Figures 11, 12, and 13 also show how R? varies with ¢, for the three
methods.

Figure 14 compares the loss function values of three methods,
which shows that MLR consistently has the highest loss for all
values of ¢, and XGBoost performs with the lowest loss, indicating
that XGBoost outperforms LightGBM and MLR. Furthermore, as ¢,
increases from 1 to 15, the loss values for all methods increase,
with MLR exhibiting a percentage increase in loss of about 45
per cent compared to XGBoost. Overall, XGBoost outperforms
LightGBM very slightly and MLR by a notable margin when an
asymmetric loss function is considered, regardless of the value
of ¢y.

5.3 Exploration on residuals of XGBoost

Here we explore the predictive performance of XGBoost across
different categories when ¢, = 1 and ¢, = 5. For instance, we seek
to explore whether XGBoost would achieve similar performance
for flights on different days of the week. Figure 15 thus shows the
25th percentile, median, and 75th percentile of the loss function
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value. No significant differences are observed over different days
of the week except for Saturday with a higher loss function value.
This means that the performance of XGBoost is overall consistent
over the days.

We next define a criterion for misprediction. We state a value
is mispredicted, thus constituting a misprediction, if the absolute
residual is larger than 25 (i.e, | y — ¥ |> 25) and the relative
deviation is larger than 20 per cent (i.e.,, |y — ¥ | /y > 20 per cent).
Then for each destination city, we can compute the proportion for
mispredicted samples. Figure 16 shows the top destination cities
with the highest misprediction proportions. The two notable des-
tinations are Anchorage, Alaska and Hayden, Colorado. Figure 17
shows that the residual distribution for Atlanta, Georgia is clearly
tighter than those for the two identified airports with significant
mispredictions.

One possible reason for baggage mispredictions for Anchorage-
bound flights is that 75 out of 268 flights (28.0 per cent) arriving
in Anchorage are operated by wide-body aircraft. The number of
bags per flight for Anchorage is 178 on average while the average
bag count for the whole dataset is 92. The latter city, Hayden, Col-
orado, is one of the smallest cities that has air services in the US
because its population was only around 2,000 in 2020. The whole
dataset has only 126 samples for Hayden, covering a four-month
winter period from December to March. In other words, those are
seasonable flights. It is very likely that most of those passengers
are taking ski vacations in Hayden during winter months. It is thus

11

understandable that those passenger characteristics are quite
different. For instance, on average 108 passengers are classified
as leisure travelers and 8 passengers are classified as business
travelers by Airline A (i.e., the percentage for business travelers is
0.7 per cent). In contrast, a much higher proportion of passengers
(i.e., 33 per cent) travel for business instead of leisure, as classified
by Airline A. In addition, a higher percentage of passengers travel
with a child or infant on Hayden-bound flights than the same per-
centage for the entire dataset. Clearly, the underlying patterns for
the identified cities in Fig. 16 are different from most other flights
in the dataset, which means that those associated flights can be
considered ‘outliers’. Therefore, substantial mispredictions occur.

Figure 18 shows the misprediction proportion for each fleet
type. Four leading fleet types with a large misprediction pro-
portion are all wide-body aircraft, which suffer from the same
under-representation issue. Figure 19 also shows that the residual
distribution for Airbus A319 is much tighter than the distributions
for Boeing 777 and 787.

Even though XGBoost achieves a very high prediction accuracy
overall, its performance may not be satisfactory for certain flights
with insufficient data support. For instance, mispredictions
are significant for those flights associated with the identified
destination cities and fleet types. Additional efforts need to be
made to improve the predictive performance of those outlier
flights. For instance, more historical data, covering multiple years
rather than one, are necessary to achieve an acceptable prediction
performance.

6. Discussion

Selecting an appropriate prediction algorithm is never an easy
task as a trade-off between a learning algorithm’s complexity
and its performance needs to be made. For checked baggage
prediction, the historical average approach is used in practice
primarily due to its intuitiveness and simplicity. However, even
a very typical linear regression algorithm can outperform the
state-of-the-practice approach by a good margin; an advanced
machine learning algorithm, such as LightGBM or XGBoost, is
more effective in achieving high prediction accuracy, which
is expected. Despite the superior performance of LightGBM
and XGBoost, especially measured by accuracy, both gradient
boosting methods, as an ensemble model, are not interpretable
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(Luo et al., 2022; Shi et al., 2023). It is less transparent than the
linear regression or historical average approach for analysts
to understand how a value is predicted. From a pragmatic
perspective, low interpretability means a lower chance of
acceptance by analysts. In addition, the complexity of XGBoost
is high, as it requires more hyperparameter tuning than MLR.
Figure 20 clearly indicates that the MLR training time is almost
negligible in relative to the training time for XGBoost even though
16 threads are used in parallel to train XGBoost. LightGBM, while
itis also a gradient boosting method, takes 11.4 and 28.2 seconds
for training with 100,000 and 700,000 samples, respectively, which
are dramatically shorter than for XGBoost.

For this specific prediction task, the relation between the target
variable (i.e., the checked bag count) and a few key features
(e.g., the revenue passenger count) is found to be largely linear,
although other factors (e.g., destination city characteristics and
travel seasons) also play a role. The clear linear relation explains
why a linear regression algorithm can achieve a satisfactory
performance. Linear regression results are highly interpretable.
For instance, the coefficient for the number of passengers in the
main cabin measures how many bags a passenger in the main
cabin carries. Although this coefficient varies over time and across
regions, values of this coefficient can be tracked by airlines to
understand the trends in checked baggage. Linear regression is
thus recommended for replacing the historical average approach.
XGBoost or other complex learning algorithms are recommended
for those cases where the linear relation is unclear or not well
characterized by available data.

A more detailed baggage prediction model can be developed
at the individual passenger level, as the current analysis is con-
ducted at the flight level. In the individual prediction model,
historical baggage data for an individual can be leveraged to
understand how likely they are to check bags. Then, individual
bag counts can be aggregated to obtain the flight-level bag count.

7. Conclusions

With a very large-scale multi-source dataset covering the entire
USA, we customized three machine learning algorithms of var-
ious complexities to predict the number of checked bags on a
flight and evaluated the performance improvements of those
three machine learning algorithms. Our primary contribution is
to systematically consider the different impacts of overprediction
and underprediction on airline operations and to customize three
machine learning algorithms with a piecewise quadratic loss
function. Our numerical experiments indicate that: (1) the two
gradient boosting methods can significantly outperform standard
MLR; (2) XGBoost can further improve the predictive performance
of LightGBM, regardless of whether the asymmetric loss func-
tion is considered or not; (3) LightGBM is more efficient than
XGBoost in terms of training process. We also find that even
though XGBoost has remarkably high accuracy in predicting the
bag count at the flight level, the performance is not uniform, as
checked bags in certain categories cannot be predicted satisfac-
torily. For instance, the misprediction portion tends to be high for
flights to Anchorage, Alaska, or flights operated by wide-body air-
craft. One major shortcoming of XGBoost is its low interpretabil-
ity. Therefore, it is noted that an ideal prediction algorithm for
adoption in practice should strike a reasonable balance between
accuracy and interpretability.

This present study can be improved in the following ways.
First, the entire dataset can be partitioned so that certain cat-
egories of samples (e.g., those involving wide-body aircraft) can
be predicted by dedicated machine learning algorithms with high
complexity while the rest of the samples can be predicted with a
low-complexity algorithm. Second, the checked baggage weight
can be further predicted when such data are available. Third,
additional passenger-related features, such as gender, age, and
travel duration (time difference between departure and arrival
times), may be added to improve the predictive performance.
Additionally, efforts are needed to investigate how such a predic-
tion tool can be incorporated into airline revenue management.
Finally, in this study, the baggage prediction is conducted only
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once, several hours prior to departure. The predicted baggage
volume, when available, initializes the aircraft load planning pro-
cess. As the availability of information varies over time, it is
interesting and relevant to update prediction results when new
information (e.g., trip cancellations or itinerary changes) becomes
available as a flight's departure nears. The current static pre-
diction can be extended to a dynamic prediction in a future
study.
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Appendix A. A List of considered features

Table A1 lists the name, description, and variable type of each
feature that is considered in the case study.

Feature name Description [# features if categorical] Variable type

Flight-related
FLIGHT_DEP_M Scheduled departure date (month only) [12] Categorical
FLIGHT_ARVL_M Scheduled arrival date (month only) [12] Categorical
FLIGHT_DEP_DW Scheduled departure date (day of the week) [7] Categorical
FLIGHT_ARVL_DW Scheduled arrival date (day of the week) [7] Categorical
FLIGHT_DEP_HOUR Scheduled departure time (hour only) [24] Categorical
FLIGHT_ARVL_HOUR Scheduled arrival time (hour only) [24] Categorical
LEG_DISTANCE Number of miles of this leg Continuous
ORIG_CITY_NM Origin city name [112] Categorical
DEST_CITY_NM Destination city name [116] Categorical
AIRCRAFT_TYPE Type of aircraft (wide or narrow body) [2] Categorical
FLEET_TYPE Fleet classification code [11] Categorical
TTL_SEATS Total number of seats Continuous
TTL_PAX Total number of passengers Continuous
LF Load factor = number of passengers/number of seats Continuous

Passenger-related
PAX_REV Number of revenue passengers on the flight Continuous
PAX_NONREV Number of non-revenue leisure passengers Continuous
PAX_POS_SPC Number of non-revenue business passengers Continuous
PAX_CONNECT Number of passengers on the flight who have a connection Continuous
PAX_LOCAL Number of passengers who start their flight at the departure airport Continuous
PAX_BUSINES Number of passengers classified as business passengers Continuous
PAX_LEISURE Number of passengers classified as leisure passengers Continuous
PAX_CHILD_WINF Number of passengers with a child or infant Continuous
PAX_ASSIST Number of passengers who require assistance Continuous

(Continued)
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Table Al. Continued

Feature name Description [# features if categorical] Variable type
PAX_ANIMAL Count of all the service/emotional support animals on the flight Continuous
LYLTY_X Number of passengers with a loyalty status of X Continuous
NUM_GROUP_Y Number of groups that contain Y passengers Continuous
CABIN_FIRST Number of passengers in first class Continuous
CABIN_BUSINESS Number of passengers in business class Continuous
CABIN_PREM Number of passengers in premium economy Continuous
CABIN_MAIN Number of passengers in main cabin Continuous
BOOK_DAYS2DEP_Z Number of passengers booked within Z days prior to departure Continuous
BOTH_CARD Number of passengers who hold credit cards A and B Continuous
CARD1 Number of passengers who hold credit card A only Continuous
CARD2 Number of passengers who hold credit card B only Continuous
SALES_BUSINESS Number of passengers booking via a business sales channel Continuous
SALES_DIRECT Number of passengers booking via official websites Continuous
SALES_LEISURE Number of passengers booking via a leisure sales channel Continuous
SALES_OTA Number of passengers booking via an online travel agency Continuous
SALES_TMC Number of passengers booking via a travel management company Continuous

Supplemental
CK_POINT TSA checkpoint travel numbers Continuous
ENP_ORIG Enplanement of origin airport Continuous
ENP_DEST Enplanement of destination airport Continuous
POP_ORIG Population of origin city Continuous
POP_DEST Population of destination city Continuous
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