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Abstract: Individual evacuation decision making has been studied for multiple decades mainly using theory-based approaches, such as
random utility theory. This study aims to bridge the research gap that no studies have adopted data-driven approaches in modeling the
compliance of hurricane evacuees with government-issued evacuation orders using survey data. To achieve this, we conducted a survey
in two coastal metropolitan regions of Florida (Jacksonville and Tampa) during the 2020 Atlantic hurricane season. After preprocessing
survey data, we employed three supervised learning algorithms with different complexities, namely, multinomial logistic regression, random
forest, and support vector classifier, to predict evacuation decisions under various hypothetical hurricane threats. We found that the evacuation
decision is mainly determined by people’s perception of hurricane risk regardless of whether the government issued an order; COVID-19 risk
is not a major factor in evacuation decisions but influences the destination type choice if an evacuation decision is made. Additionally, past
and future evacuation destination types were found to be highly correlated. After comparing the algorithms for predicting evacuation
decisions, we found that random forest can achieve satisfactory classification performance, especially for certain categories or when
some categories are merged. Finally, we presented a conceptual optimization model to incorporate the data-driven modeling approach
for evacuation behavior into a government-led evacuation planning framework to improve the compliance rate. DOI: 10.1061/
NHREFO.NHENG-1976. © 2024 American Society of Civil Engineers.
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Introduction

This study is motivated by the inadequate modeling of individual
choices of evacuees in hurricane evacuation optimization studies.
Given the predicted impact of a hurricane, emergency management
officials can authorize different types of evacuation orders (i.e., vol-
untary or mandatory) to protect the lives of residents in designated
regions. After a mandatory evacuation order is issued, residents are
expected to comply with it and take action to evacuate from risky
areas. However, it is known that various factors influence people’s
evacuation decisions before hurricanes (Baker 1991; Dash and

Gladwin 2007; Bowser and Cutter 2015). Important factors include
housing type, past experience, availability of transportation means,
and information sources (Ploran et al. 2018), among others, that
determine how the risk is perceived and subsequently how the
evacuation decision is triggered (Huang et al. 2016; Stein et al.
2013). Therefore, mandatory evacuation orders do not guarantee
all residents will evacuate, i.e., full compliance, since individual
circumstances highly vary (Gladwin et al. 2001). Empirical studies,
such as Martín et al. (2017) and Wong et al. (2020), also confirm
that residents facing mandatory evacuation orders may not neces-
sarily comply. Nonetheless, very few of the existing hurricane
evacuation optimization studies, e.g., Apivatanagul et al. (2012)
and Lu et al. (2017), have considered residents’ compliance with
evacuation orders in the design of government-led evacuation
plans. On the contrary, the bulk of the hurricane evacuation plan-
ning literature is based on oversimplified assumptions about evac-
uees’ decision making. For instance, Lim et al. (2012) developed
new network flow models for the optimization of evacuation paths,
flows, and schedules without considering the responses of evacuees
to the optimized evacuation decisions. Neglecting evacuees’ indi-
vidual choices or assuming full compliance with evacuees would
result in a limited and unrealistic description of their decisions
before or during a hurricane evacuation.

The compliance of evacuees with evacuation orders should by
no means be overlooked in government-led hurricane evacuation
planning because the efficiency and effectiveness of an evacuation
plan created by an evacuation management agency largely depend
on how residents comply with it (Stein et al. 2013). This issue
cannot be addressed by taking coercive measures by governments.
Instead, the key lies in understanding how governments can effec-
tively guide and support evacuees’ decisions in a human-centric
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manner. Since a lot of factors influence residents’ evacuation
decision making, from the government’s point of view, certain
measures can be taken to influence a subset of such factors in order
to shift residents’ decisions to improve the compliance rate, trans-
lating to improved efficiency and effectiveness of an evacuation
plan. As illustrated in Fig. 1, a range of factors jointly determine
whether an individual evacuates or not. Such a set of factors can
be divided into two subsets depending on whether the government
is able to influence a factor or not. For example, while the
government is unable to change one’s age or gender, it can focus
on improving transportation services, diversifying information
dissemination channels, and establishing financial support mecha-
nisms for evacuation-related expenses for targeted residents. Since
the government has a few instruments to influence residents’ deci-
sions, an optimization problem can thus be designed with the goal
of achieving a higher compliance rate, thus directly enhancing the
effectiveness of evacuation plans, subject to resource constraints,
e.g., a limited vehicle fleet and a budget limit.

The primary objective of this study is thus to model evacuees’
behavioral compliance with evacuation orders with a data-driven
approach such that the outcome of this study (i.e., a data-driven
model for analyzing or classifying evacuees’ choices) can be incor-
porated into the hurricane evacuation planning framework shown in
Fig. 1. Note that incorporating such a data-driven approach in an
evacuation optimization problem cannot be realistically done in a
single paper focusing on data-driven modeling of evacuation deci-
sion making. Therefore, the incorporation of this paper’s outcome
in evacuation planning optimization is left as an extension of this
paper.

Evacuees’ responses to evacuation orders involve a range of
choices, such as evacuating or staying, using public shelters or
hotels, evacuating by car or transit, and evacuating immediately
or later. In the literature, there are two major paradigms for choice
modeling, namely theory-driven and data-driven, as classified by
van Cranenburgh et al. (2022). Specifically, in the case of hurricane
evacuations, evacuees’ choices are predominantly analyzed using
utility-based models. For instance, Wong et al. (2020) employed
latent class choice models based on the discrete choice theory to
study the evacuation choice (evacuate or not). Theory-driven

models, often grounded in random utility theory, offer a structured
approach to understanding how individuals might make choices
based on utility maximization. They require the careful crafting
of theoretical frameworks to incorporate factors like income and
housing conditions into the model. While these models are de-
signed around the existing knowledge and hypotheses of research-
ers, it is important to recognize that they represent approximations
or simplifications of complex decision making processes. As such,
there may be some divergence from the full spectrum of real-world
behaviors. Nevertheless, these theory-driven approaches provide
valuable insights and a foundational framework for analyzing
choice behaviors.

Another modeling paradigm, namely the data-driven approach,
does not rely on any specifications of the relations between inde-
pendent variables and dependent variables; instead, data-driven
models discover those relations by learning from the observed
input-output pairs. Various factors that may influence evacuation
decisions are modeled as features (or inputs), while evacuation
decisions are targets (or outputs). When evacuation decisions are
discrete, the choice modeling is essentially a classification task.
Thanks to the rapid developments in supervised learning algo-
rithms, a data-driven approach can often achieve higher goodness-
of-fit than theory-driven approaches (van Cranenburgh et al.
2022). Therefore, many data-driven models have been developed
and compared with theory-driven models in many choice modeling
areas, such as high-speed train choice modeling (Sun et al. 2018).
Nonetheless, to the best of the authors’ knowledge, no studies have
adopted data-driven approaches in modeling the compliance of hur-
ricane evacuees using survey data. This paper thus presents the first
known effort to analyze the relations between various factors and
evacuees’ individual choices using a data-driven approach. To the
best of the authors’ knowledge, this paper is the first to use multi-
nomial logistic regression, random forest, and support vector clas-
sifier in a purely data-driven manner for modeling the behaviors of
hurricane evacuees using survey data. Although as a variant of the
generalized linear models, multinomial logistic regression structur-
ally resembles the multinomial logit model, a variant of discrete
choice models rooted in utility maximization theory, the data-
driven nature of multinomial logistic regression implies we do
not intend to analyze causal relationships, while prioritizing high
classification accuracy instead.

In this study, we designed and launched a survey in two coastal
metropolitan regions in Florida (namely, Jacksonville and Tampa)
between July 2020 and September 2020, coinciding with the
COVID-19 pandemic. Based on the survey results, we employed
three classification algorithms with different complexities to predict
evacuation decisions under various scenarios. Specifically, we con-
sidered the following individual evacuation decisions as targets:
evacuation likelihood, evacuation order compliance, and destina-
tion choice. The predictive performance of each classification
algorithm was also evaluated, and some key findings were then
summarized.

The remainder of this paper proceeds as follows. We first iden-
tify a research gap after reviewing relevant evacuation behavior
studies grouped by modeling paradigm and data collection method.
Then, we describe the sampling method, questionnaire design, and
data processing and show some exploratory analysis results. Next,
three classification algorithms are presented along with hyperpara-
meter tuning and model evacuation methods. We further develop
conceptual models to illustrate how the data-driven behavior model
can be incorporated into a government-led evacuation planning
problem. Finally, we present the study findings and discussions,
followed by conclusions.

Age Financial
situation

Information
source

Family
Size

Transportation
Availability

Housing
Type Additional

factors

Evacuate
Stay

Influence

Cannot
change

Can change

Decisions

Positive
feedback

Government

Fig. 1. Government-led hurricane evacuation planning considering
evacuees’ individual choices.
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Literature Review

We begin the literature review by first examining the assumption of
evacuee behaviors in government-led evacuation planning optimi-
zation studies. We then show that evacuees are mainly assumed to
be fully compliant in such studies, in contrast with the noncompli-
ance assumption in individual hurricane evacuation behavioral
studies. Next, we indicate that descriptive analyses and discrete
choice models are widely used in modeling the decision making
of individual evacuees while data-driven approaches are sparse.
Even though some data-driven approaches are applied to evacu-
ation behavior modeling in other contexts, such as cinema or wild-
fire evacuation, no studies have used data-driven approaches for
hurricane evacuation behavioral modeling. Lastly, we note the im-
portance of systematic sampling. If it is absent, it is well known that
the resulting sample is biased, and the relevant findings cannot be
generalized to the whole population. After those reviews are organ-
ized into three parts, research gaps are identified.

Modeling of Individual Decision Making in Evacuation
Planning

Given the critical role of hurricane evacuation in mitigating the im-
pact of a hurricane, especially in saving human lives and speeding
up disaster response, researchers have been studying people’s re-
sponses to approaching natural hazards and disasters (Lindell et al.
2018). These include the prediction of people’s evacuation deci-
sions, which are discussed in depth in the following section, as well
as the modeling of evacuation actions. For example, Lindell and
Perry (2012) revised the theoretical protective action model to in-
clude the timing of household evacuation. The revised model in-
volved rates of exposure to warning mechanisms (such as radio
and TV) over time and mental or logistical preparation required
for households to take evacuation actions.

Researchers have developed various optimization models for
supporting evacuation planning. In a review article, Galindo
and Batta (2013) indicated that evacuation optimization studies
involved many decisions, such as network design, shelter location,
and emergency vehicle routing and scheduling, which were af-
fected by people’s preferences. Galindo and Batta (2013) assessed
the appropriateness of common assumptions adopted in evacu-
ation planning and classified each one as unrealistic, limited, or
reasonable. In a transit-based evacuation study, Chen and Chou
(2009) assumed that the evacuation demand at each bus stop
and the total demand for a shelter were known right after the dis-
aster, which was evaluated to be unrealistic by Galindo and Batta
(2013). In an emergency supply prepositioning study, Rawls and
Turnquist (2010) assumed a limited number of scenarios with the
probability of each scenario estimated from historical data. How-
ever, the very low frequency of past disasters makes the accurate
prediction of such probabilities quite challenging (Galindo and
Batta 2013). Another limited or unrealistic assumption, which
was not discussed in Galindo and Batta (2013), was the full-
compliance assumption. The effect of noncompliant behavior
on evacuation planning was not adequately considered, although
behavioral researchers were well aware of the noncompliant
behavior (Connolly et al. 2020). Therefore, there is a divide be-
tween the hurricane evacuation behavioral modeling and evacu-
ation planning optimization communities regarding the treatment
of noncompliant behavior.

Evacuation Compliance Modeling Methods

Many research methodologies have been employed to study
the individual decision making of evacuees. As classified by

Golshani et al. (2019), the first group of studies mainly relied
on descriptive analyses and simple statistical tests, especially those
early studies. The second group of studies investigated the effect of
various factors on evacuation decisions from a behavioral perspec-
tive using discrete choice modeling. We next review some
representative studies in each category.

As a representative study in the first group, Baker (1991) con-
sidered each potential factor and qualitatively examined its impact
on evacuation response based on surveys conducted by earlier
researchers covering many geographic regions and spanning a
few decades. One notable conclusion drawn by Baker (1991)
was that many demographic factors, such as age, education, and
family status, did not explain the variation in evacuation response
well. Instead, Baker (1991) identified risk level, action taken by
governments, and type of housing, among others, as the major de-
terminants of a hurricane evacuation. Collins et al. (2021) used sim-
ilar descriptive statistics to examine people’s hurricane evacuation
decision making during the time period of COVID-19.

Cross tabulation is a widely used method to show the relations
between two categorical variables. For instance, Zhao et al. (2023)
studied relationships between hurricanes and COVID-19 risk
perceptions and evacuation intention with cross tabulation and
assessed the statistical significance of the relationship with a
chi-square test. They found that perceived hurricane risks signifi-
cantly influenced household evacuation decisions regardless of
people’s concern about getting sick with COVID-19. Brown et al.
(2016) used chi-square and t-tests to study hurricane evacuation
during Hurricane Sandy. They found a higher evacuation rate
for those who witnessed trauma (related to the World Trade Center
attacks) in the past. In another representative work, Matyas et al.
(2011) used chi-square tests to determine what individual character-
istics influenced the likelihood of evacuation based on a survey of
Florida tourists. As the chi-square test examines the relationship
between two variables, it cannot capture the compound impact
of multiple independent variables (e.g., family size, residential
type, and education level) on evacuation decisions.

We next review some representative theory-driven models in the
second group, which are mostly discrete choice models. Golshani
et al. (2019) conducted web-based surveys and employed a multi-
variate ordered probit model to estimate the likelihood of taking
one of the following choices: ignoring the threat, seeking shelter
at the same place, and evacuating to a safe place. They found some
notable determinants of evacuation. For instance, people who were
well-educated or living in multiunit buildings were more likely to
evacuate. Ling et al. (2021) studied the effect of information sour-
ces and social networks on evacuation behavior based on data from
589 completed postal surveys in Jacksonville, Florida. They devel-
oped a mixed logit model and found that larger social networks and
durable friendships contributed to shadow evacuation decisions. In
a recently published study, Bian et al. (2022) examined the effect of
travel delays on household evacuation decisions, including evacu-
ation or not, departure time, and destination choices. Random
parameter logit models were calibrated using data from 415 surveys
conducted in Virginia coastal areas in 2017. They found that house-
holds tended to evacuate when they were informed of significant
travel delays. Botzen et al. (2022) employed an ordered probit
model to assess how the COVID-19 pandemic impacted evacuation
intentions during the 2020 hurricane season among residents of
flood-prone areas in Florida. The results revealed that COVID-
19 concerns overwhelmed flood risk perceptions, inhibiting evacu-
ation, particularly among older people.

As it is not our intention to conduct a comprehensive survey of
all the discrete choice models for evacuation behavior modeling,
we direct interested readers to an in-depth review conducted by
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Murray-Tuite and Wolshon (2013). It is quite clear that theory-
driven models are predominantly used in understanding hurricane
evacuation behavior, possibly because of their sound behavioral
foundations. Many fruitful results have been obtained from those
discrete choice analyses, which are very helpful in informing the
emergency management practice.

Nevertheless, those discrete choice models are not without
shortcomings or weaknesses. The utility functions are handcrafted
based on modelers’ prior-belief of the effect of certain factors.
Therefore, subjectivity in results is unavoidable (Ben-Akiva and
Lerman 2018). As utility functions are typically assumed to be lin-
ear, any nonlinear relations cannot be captured. In addition, the
practice of searching for the most appropriate utility function is
labor-intensive (van Cranenburgh et al. 2022). van Cranenburgh
et al. (2022) have identified other shortcomings in discrete choice
modeling.

Even though data-driven approaches have been successfully
used in modeling choices in some fields, such as travel mode choice
(Zhao et al. 2020b), applications of data-driven approaches in
evacuation behavior modeling and analysis are very rare. One dis-
tinction of data-driven approaches is in their capability to learn the
fundamental patterns and relations in the raw data without any prior
specifications of those relations. In nonhurricane evacuation stud-
ies, Zhao et al. (2020a) employed data-driven approaches for
understanding preevacuation decision making of building occu-
pants based on data collected from unannounced evacuation drills
in a Swedish cinema. Although Zhao et al. (2020a) represent the
most relevant study to this paper, notable differences remain. For
instance, hurricane evacuation is much more complex than making
decisions during preevacuation periods because the latter is less
likely dependent on socioeconomics, such as income. In addition,
cinema preevacuation behavior is considered one-dimensional by
Zhao et al. (2020a), i.e., either the normal stage or the response
stage. The normal stage is to continue previous actions, and the
response stage is to investigate or evacuate. By contrast, hurricane
evacuation decision usually has multiple dimensions, including
destination choice, departure time choice, and mode choice.

Roy and Hasan (2021) presented a data-driven model, specifi-
cally an input-output hidden Markov model (IO-HMM), to infer
individual evacuation behaviors (e.g., evacuation intent and timing)
from geocoded tweets during hurricanes. They considered five in-
put variables such as time from landfall and whether a user’s home
is in a mandatory evacuation zone. Two output variables were con-
sidered, namely, the distance of a user’s current location from
home, and evacuation similarity scores of posted tweets. Their case
study demonstrated the great potential of real-time social media
data in predicting and understanding individual evacuation dynam-
ics. Nonetheless, Roy and Hasan (2021) noted the limited and
uneven penetration of Twitter, now known as X, may cast the gen-
eralization of the developed model into question.

Zhao et al. (2021) introduced a conceptual framework that
combines artificial intelligence with current wildfire evacuation
modeling to enhance the understanding of household evacuation
behaviors in such emergencies. Nonetheless, they did not present
any case studies.

It should be noted that some data-driven models have been
developed for crowd evacuation simulation, such as Yao et al.
(2019). As such models focused on pedestrian movements, detailed
reviews are not presented here. Interested readers are directed to
Dong et al. (2019).

Xu et al. (2023) tested seven different machine learning algo-
rithms using data from the 2019 Kincade Fire. Their findings
underscored the superior performance of machine learning models,
with the classification and regression tree (CART) model, in

particular, offering both high predictive accuracy and clear inter-
pretability. While Xu et al. (2023) provide valuable insights into
the potential of machine learning in this domain, it is applied to
the study of wildfire evacuation behaviors. Understandably, evacu-
ation behaviors are quite different when the disaster type differs,
such as wildfire versus hurricane. Therefore, our study seeks to fill
the research gap that data-driven models are barely yet used to
understand hurricane evacuation decisions.

Data Collection Methods for Evacuation Compliance
Modeling

As high-quality survey data are essential in understanding evacu-
ation behaviors, researchers have employed various data collection
methods, including face-to-face interviews, paper-based surveys,
telephone surveys, and web-based surveys (email or social media)
(Thompson et al. 2017). While all those data collection methods
have been widely used, each of them has its advantages and dis-
advantages. In-person surveys are advantageous because complex
interview questions can be asked and follow-ups can be conducted
easily. A clear disadvantage of it is its high cost, which usually
implies a limited sample size. Paper surveys can be distributed
in large volumes and can reach certain targeted respondents.
One of its advantages is the significant data compilation efforts.
Telephone surveys can be conducted by random digit dialing, while
it is widely known that older respondents are much more interested
in participating in telephone surveys (Bowser 2013). Web-based
surveys require the least amount of money and time, meaning a
very large audience can be targeted; however, the representative-
ness of the collected sample is usually questionable. For instance,
younger people rely on social media more than older people, mean-
ing the latter group does not usually participate in surveys launched
on social media. Those hard-to-reach individuals are more respon-
sive to traditional surveys based on paper or telephone. More sys-
tematic discussions of those survey methods are available in Jones
et al. (2013).

In addition, to avoid biased samples, random sampling or strati-
fied random sampling is necessary. Otherwise, it is quite difficult to
generalize the findings from analyzing the survey results to the
whole population.

Summary

Through the presented reviews, we recognize that while noncom-
pliance of residents with hurricane evacuation orders has been ex-
tensively analyzed using descriptive or theory-driven methods, the
potential advantages of a data-driven approach have been under-
explored. Data-driven approaches offer the benefit of discovering
relations between independent and dependent variables from the
observed data without relying on prior assumptions or handcrafted
specifications. In the context of hurricane evacuations, data-driven
approaches allow us to capture potentially complex relations be-
tween various influencing factors and evacuees’ choices without
being bound by preconceived beliefs or theories. In addition,
while there are multiple data collection methods for evacuation
behavior studies, the use of a sampling approach that effectively
captures a representative sample of the population is essential for
generalizing the research findings to the broader demographic.
This paper thus seeks to advance the literature by investigating
residents’ partially compliant behaviors with mandatory evacu-
ation orders using supervised learning algorithms based on
mixed-mode survey data sampled by Florida’s voter registration
system.
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Data

Sampling Method

Two major metropolitan areas involving three counties in Florida
(Duval, Pinellas, and Hillsborough) were selected for the survey,
namely, Jacksonville and Tampa, as shown in Fig. 2. During the
last several years, all three counties issued mandatory evacuation
orders for Hurricane Irma in 2017; Duval County also issued
mandatory evacuation orders for Hurricane Dorian in 2019. As
only residents in county-designated hurricane evacuation zones
(Florida Division of EmergencyManagement 2022) will be ordered
for evacuation in Florida, we selected Zones A to E that are more
prone to hurricane threats.

To best represent the targeted population, we randomly selected
survey respondents (18 years of age or older) from the latest Florida
Voter Registration list, which is a public record in Florida. This
voter registration data set contains the voter’s name, date of birth,
sex, race, party affiliation, and address. The advantage of using
voter registration information is that we have background informa-
tion, especially the mailing addresses, that facilitates our stratified
random sampling. More importantly, the physical address from the
voter registration database can be used to infer the evacuation zone,
while a survey respondent may report a different zone. Since the
Florida Emergency Management agencies emphasize “KNOW
YOUR ZONE” in their hurricane preparedness education pro-
grams, an inconsistent report of evacuation zone by a resident
may likely indicate a lack of awareness.

A stratified sampling approach was used. In each metropolitan
area, 4,000 residents were randomly selected from the voter

registration list with control of the evacuation zone. Half of the res-
idents live in Zone A and Zone B, and the other half in Zone C,
Zone D, and Zone E. This sampling approach allowed us to cover
high-risk zones (Zones A and B) in both metropolitan areas.

Questionnaire Design

In a hurricane evacuation survey, residents are typically asked
about their property type, past evacuation experiences, their evacu-
ation decisions under certain scenarios (actual or hypothetical), and
sociodemographic information. To inform our hurricane evacuation
survey and ensure it encompassed factors pivotal for understanding
compliance with evacuation orders, we extensively reviewed the
literature. The insights derived from past studies served as the
foundation for our questionnaire design, inspiring us to ask partic-
ipants about critical aspects such as their property type, past evacu-
ation experiences, evacuation decisions, and sociodemographic
information.

In an early study, Baker (1991) concluded that risk perception,
actions taken by authorities, and housing conditions were among
the key factors when residents made their evacuation decisions,
while the role of demographic factors was deemed weak or incon-
sistent. Then, in a metaanalysis of 38 actual and 11 hypothetical
evacuation studies, Huang et al. (2016) evaluated the effect of many
factors on household evacuation, such as official warnings, mobile
home residence, storm conditions, behaviors of other people, as
well as demographic variables. They also found that responses to
hypothetical evacuation scenarios were comparable to those to ac-
tual hurricane evacuations.

Fig. 2. Two study areas prone to hurricane threats. (Sources: Esri, Aribus, DS, USGS, NGA, N ASA, CGIAR, N Robinson, NCEAS, NLS, OS,
NMA, Geodatastyrelsen, Rijkswaterstaat, GSA, Geoland, FEMA, Intermap and the GIS user community.)
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Through a survey conducted in North Carolina, Whitehead
et al. (2000) identified other determinants of evacuation behavior,
in addition to those well-recognized ones, such as storm intensity.
Whitehead et al. (2000) reported that nonwhite households, pet
owners, and those with more education were less likely to evacu-
ate to a shelter or hotel. In a recent study, Wong et al. (2020)
launched a 146-question online survey in the aftermath of
Hurricane Irma, where respondents were asked to provide de-
tailed demographic information including gender, race, education
level, and income.

As the survey was conducted in the Fall of 2020 when Florida
led the United States in COVID-19 cases, several questions were
asked related to residents’ perception of health risks and their
underlying health conditions. To ease the spread of COVID-19, res-
idents were supposed to avoid leaving their homes. Those who
would like to evacuate in anticipation of a hurricane without a pan-
demic may change their choice due to concerns about getting sick
with COVID-19. The literature review of evacuations under the
cooccurrence of a natural disaster and public health crisis con-
ducted by Sakamoto et al. (2020) suggested that the COVID-19
pandemic was supposed to influence residents’ evacuation deci-
sions. The risk perception of COVID-19 and its implication for
hurricane evacuation were also analyzed by Zhao et al. (2023).

In light of the reviewed studies, our questionnaire consisted of
32 questions, as summarized in Table 1. Note that questions in
Table 1 may have been shortened or paraphrased due to space lim-
its. Those questions were of different types, such as multiple choice
(single or multiple answers), Yes-or-No, and Likert scale. Certain
questions were in the matrix format, which means residents were
asked to evaluate multiple choices for each row item. For instance,
Q14 asked residents how likely they would evaluate under each
hurricane category while considering the impact of COVID-19.

To improve the survey response rate, surveys were distributed
by mail, while respondents had the choice to respond online or mail
their responses, which is why the survey is called mixed mode
(Millar and Dillman 2011). In total, 592 valid survey responses
were received between July and September 2020, resulting in a re-
sponse rate of approximately 8%. This relatively low response rate
might be due to the COVID-19 surge experienced by Florida in
July and August 2020. Residents at that time avoided unnecessary
activities (such as mailing) due to the COVID-19 health risk.

Data Preprocessing

Table 2 presents the three response variables identified from the
questionnaire, as follows:

Table 1. Overview of survey questions

ID Survey question (may be shortened or rephrased) Question type

Q1 Which evacuation zone is your home located? Multiple choice (single)
Q2 What hurricane mitigation features does your home have? Multiple choice (multiple)
Q3 If a hurricane of Category X hits your area, would you think it is safe for you to stay in your home? Matrix
Q4 What was the most recent hurricane that made threats to your area? Multiple choice (single)
Q5 When this hurricane made threats to your area, did you evacuate or stay? Yes-or-No
Q6 Where did you go (if applicable, depending on the response to Q5)? Multiple choice (multiple)
Q7 How did you go there (if applicable)? Multiple choice (multiple)
Q8 How would you rate your last evacuation experience (if applicable)? Matrix
Q9 Do you recall the predicted strength of the most recent hurricane? Multiple choice (single)
Q10 Do you recall hearing evacuation orders, either directly or indirectly? Yes-or-No
Q11 Do you recall how you heard the evacuation order for this hurricane? Multiple choice (multiple)
Q12 How much do you rely on the following channels to gain information about emergencies, such as hurricanes

and COVID-19?
Matrix

Q13 Towhat extent do you trust the information about emergencies (such as hurricanes and COVID-19) from the
following sources?

Matrix

Q14 If a hurricane threatens your area this year (2020) and the COVID-19 pandemic is still present, how likely
would you consider an evacuation?

Matrix

Q15 Under the same conditions as Q14, how likely would you evacuate if the government issues an evacuation
order for your area?

Matrix

Q16 If you decide to evacuate this year (2020), where would you plan to go? Multiple choice (single)
Q17 If you decide to evacuate this year (2020), how do you plan to go there? Multiple choice (single)
Q18 Would you be more likely to go to a public shelter, if the following measures to contain the spread of

COVID-19 are taken at this public shelter?
Matrix

Q19 What would be the major concerns for you not to evacuate if an evacuation order were issued in your area
this year?

Multiple choice (multiple)

Q20 Do you have any of the following existing health conditions? Multiple choice (multiple)
Q21 Has anyone you know in person ever been diagnosed with COVID-19? Multiple choice (multiple)
Q22 Were you or are you currently sick with COVID-19? Yes-or-No
Q23 How likely do you think the chance for yourself to be sick with COVID-19 by the end of the year of 2020 Five-level Likert scale
Q24 Which of the following do you practice on a daily base at present to protect yourself and others from

COVID-19?
Matrix

Q25 Which year were you born? Text
Q26 What is your gender? Multiple choice (single)
Q27 Do you have any children under the age of 18 living in the same household? Yes-or-No
Q28 Is any family member with special medical needs, disability, or limited mobility living in the same

household?
Yes-or-No

Q29 What type of housing do you live in? Multiple choice (single)
Q30 How long have you lived at your current address? Multiple choice (single)
Q31 What is the highest grade you completed in school? Multiple choice (single)
Q32 What was your household income in 2019? Multiple choice (single)
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• EvacVolunt: Represents an individual’s likelihood to evacuate
for a hurricane under a voluntary evacuation order during the
COVID-19 pandemic.

• EvacMandt: Evaluates an individual’s evacuation likelihood to a
mandatory evacuation order during the COVID-19 pandemic.

• DestChoice: Depicts an individual’s preferred evacuation
type (e.g., public shelter versus hotel) during the COVID-19
pandemic.
The EvacVolunt and EvacMandt represent individuals’ inclina-

tion to evacuate voluntarily and under a mandatory order, respec-
tively. Hurricane Category 3 is the most challenging one for the
government to classify whether people are willing to evacuate,
while it is less ambiguous to make decisions under other hurricane
categories. Hence, for both EvacVolunt and EvacMandt, we focus
on Category 3 in the subsequent analyses. The last response Dest-
Choice reflects the preference for evacuation destination types.

Note that abbreviated names (e.g., EvacVolunt and EvacMandt)
are used, while readers should refer to Q14, Q15, and Q16 for de-
tails, as indicated in Table 2.

To handle the three classification problems, feature preprocess-
ing is needed, which consists of missing value processing, nominal
variable processing, normalization, and feature selection. The first
step is to handle missing value problems. Removing those cases
with missing values is a simple way to overcome this issue (Yang
et al. 2016) but would introduce substantial biases (Little and Rubin
2019). Instead, we fill those missing values with neutral alternatives
that represent no inclination or no opinion, which is an extensively
adopted strategy called neutral-value substitution (Phillips et al.
2006). Regarding the categorical variables, when confronted with
missing values, our approach is to allocate the absence of a re-
sponse to the otherwise case for certain questions (e.g., Q3 and
Q5) or the No case for others (e.g., Q27). Note that such prepro-
cessing can increase the number of samples, while it may introduce
biases to the dataset. If missing values exist in the response vari-
ables, the whole sample has to be removed.

Then, dummy encoding is conducted for the nominal variables,
e.g., gender and age range. To avoid multicollinearity, a nominal
variable of k levels is encoded into k − 1 dummies by removing
the first level because the first level is the reference level. After that,
all feature values are normalized by scaling into the range [0, 1].

As the performance of a machine learning algorithm can be im-
proved by removing irrelevant features, we keep only the most rel-
evant ones after feature selection. Two feature selection approaches
are adopted in this study, namely, the domain knowledge-based fea-
ture selection method and random forest. By referring to the liter-
ature and experts’ suggestions, some potentially correlated features
are first selected. Then, depending on the feature importance score
provided by random forest (RF), the most relevant attributes are

identified. Higher scores reflect higher correlations between fea-
tures and the target variable. The important features are kept, while
the less correlated ones are pruned. See (Yao and Bekhor 2020) for
more details on the RF-based feature selection method. As a result,
29, 33, and 30 most significant features are identified for the three
problems EvacVolunt, EvacMandt, and DestChoice, respectively.
The associated key variables are presented in Tables 3 and 4. When
one row consists of multiple options, such as five-level Likert
scales, this row refers to a continuous variable or feature. Other-
wise, each row represents a categorical variable. Clearly, some fea-
tures are not included for classifications since they are not expected
to be important, such as those from questions Q7, Q9, and Q10.
According to subsequent analyses, they do have little effect on
the classification performance.

These preprocessing steps yield 592 valid samples in total. After
removing the samples that do not answer the three target responses,
574, 581, and 534 samples are available for the three problems,
respectively.

Methodology

Classification Algorithms

As there are many machine learning algorithms for classification, it
is not our intent to exhaustively test them. Instead, we seek to com-
pare a few representative ones with various levels of complexity.
Specifically, this study involves three classification algorithms:
multinomial logistic regression, RF, and support vector machines.
Multinomial logistic regression is one of the generalized linear
models (GLMs), while RF and support vector machine classifiers
can learn nonlinear relations. Each of the three algorithms is intro-
duced next.

We first introduce multinomial logistic regression as a special
case of the generalized linear model. Then, we clarify the relation-
ship between multinomial logistic regression and a specific variant
of discrete choice models, namely, the multinomial logit model.

Multinomial Logistic Regression
Given predictors X ∈ Rp and an outcome Y of the dependent var-
iable, a GLM is defined by three components:
1. A systematic component that relates predictors X to a linear pre-

dictor η, i.e., a linear combination of unknown parameters β;
2. A random component that specifies a distribution for Y condi-

tional on X;
3. A link function g that connects the random and systematic

components.
The GLM is then written as

EðYjXÞ ¼ μ ¼ g−1ðηÞ ð1Þ
where EðYjXÞ = expected value of Y conditional on X, also denoted
as μ. The linear predictor η is essentially Xβ. The link function is
denoted as g, which establishes the relation between the linear pre-
dictor η and the expected mean EðYjXÞ. Different choices of the
link function and the distribution of the random component allow
GLMs to model a wide range of data types as data-driven models.
For instance, when the random component is normally distributed
and the link function is identity, the GLM becomes linear regres-
sion. More possible choices are presented in Lindsey (2000).

As a special case, when the dependent variable y is a Bernoulli
random variable y ∈ f0; 1g, i.e., a binary classification task is under
consideration, we need to model the probability that y equals 1
given predictors X. In other words, we map the linear predictor
Xβ to a probability pðy ¼ 1jXÞ. Given that η ¼ Xβ can be outside

Table 2. Target variables

QID Variable

Q14 EvacVolunt
Five-level Likert scale

Q15 EvacMandt
Five-level Likert scale

Q16 DestChoice
PubShelt = public shelter

HMHSharing = Hotel, motel, or home-sharing housing
FamiFrie = Stayed with families, relatives, or friends

Other

Note: “QID”: Question ID.
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[0, 1], the logistic function is used to ensure the resulting proba-
bility is between 0 and 1, as follows:

pðy ¼ 1jXÞ ¼ eη

1þ eη
¼ 1

1þ e−Xβ
ð2Þ

Since the link function is logit, the method of learning the re-
lationship between predictors and a Bernoulli random variable is
called binary logistic regression, described as follows:

gðuÞ ¼ ln

�
u

1 − u

�
¼ Xβ ð3Þ

where u ¼ pðy ¼ 1jXÞ. When the dependent variable y has J pos-
sible outcomes ðJ > 2Þ, the binary logistic regression can be gen-
eralized into the multinomial logistic regression. Given predictors
X, the probability of each category j can be modeled. For each cat-
egory j, there is a separate linear predictor, namely, ηj ¼ βT

j X. The
odds of category j relative to the baseline category J are given by

PðY ¼ jjXÞ
PðY ¼ JjXÞ ¼ eηj ¼ eXβj ð4Þ

where ηj ¼ Xβj for j ¼ 1; : : : ; J − 1 and ηJ ¼ 0 (baseline cat-
egory). The link function in the multinomial logistic regression re-
lates the probabilities of the different outcome categories to a set of
linear predictors, which is often expressed in terms of odds ratios
compared to a baseline category (usually the last category J)

gjðuÞ ¼ log

�
PðY ¼ jjXÞ
PðY ¼ JjXÞ

�
¼ ηj ¼ Xβj ð5Þ

Therefore, the probability of category j is given by a softmax
function

PðY ¼ jjXÞ ¼ PðZj > Zk; ∀ k ≠ jÞ ¼ eηjP
J
k¼1 e

ηk
ð6Þ

The outcome category with the highest associated probability is
designated as the predicted class.

Multinomial Logit Model under a Random Utility
Maximization Framework
In econometrics, discrete choice models are used to describe
and predict choices made by people among multiple discrete alter-
natives. Discrete choice can be modeled using utility theory
(McFadden 2001), positing that rational agents maximize individ-
ual utility functions, i.e., utility maximization by making choices.
Based on prior beliefs, modelers select the most suitable functional
form (relevant attributes only), e.g., coefficient specification
(positive versus negative), and error term distribution for each
alternative choice (Gumbel versus normal distribution). After being
calibrated with data, discrete choice models can be used as a causal
model to explain how people make choices and thus are used to
explain people’s behaviors (Cao et al. 2022).

Suppose agent i faces a choice among J alternatives, the
alternative with the highest utility Uij would be chosen, which
is formulated as

yi ¼ argmaxj∈f1; : : : ;JgfUijg ð7Þ

The utility Uij consists of two parts: systematic utility and ran-
dom utility. Systematic utility Vij is typically modeled as a linear
combination of observed attributes. Therefore, Vij can be written as
Vj for all agents. The random utility ϵij is used to represent the
unobserved factors by the modeler and thus this model is called
a random utility model (McFadden 2012). Facing the utility of al-
ternative j, i.e., Uij ¼ Vj þ ϵij, it is assumed that a rational agent i
prefers alternative l over j, if Vj þ ϵij < Vl þ ϵil, ∀ j ≠ l.

Numerous random utility models exist, which differ in the
underlying assumptions, such as the assumed probability distribu-
tion for the agent’s random utility. Particularly, when the random
utility follows a Gumbel distribution, the random utilities are inde-
pendently and identically distributed (i.i.d.) across alternatives, and
the random utilities are i.i.d. across rational agents, the resulting
random utility maximization (RUM) model is called the logit
model. If J > 2, it is called a multinomial logit (MNL) model.
The probability Pl that an agent chooses alternative l among a
set of alternatives C can be expressed as

Table 3. Coding of features (Part 1)

QID FID Keyword and options

Q1 Evacuation zone
F1-1 1 = Zone A or B, 0 = otherwise
F1-2 1 = Zone C, D or E, 0 = otherwise
F1-3 1 = Others, 0 = otherwise

Q3 Safety perception
F3 1 = Any yes, 0 = otherwise
F3-1 1 = Category 2 is safe, 0 = otherwise
F3-2 1 = Category 3 is safe, 0 = otherwise
F3-3 1 = Category 4 is safe, 0 = otherwise

Q4 Recent hurricane
F4-1 1 = Dorian, 0 = otherwise
F4-2 1 = Irma, 0 = otherwise
F4-3 1 = Matthew, 0 = otherwise
F4-4 1 = Other, 0 = otherwise

Q5 Previous decision
F5 1 = Evacuate, 0 = stay

Q6 Previous destination
F6-1 1 = not evacuated, 0 = otherwise
F6-2 1 = public shelter, 0 = otherwise
F6-3 1 = hotel or motel, 0 = otherwise
F6-4 1 = home-sharing housing, 0 = otherwise
F6-5 1 = stayed with families or relatives, 0 = otherwise
F6-6 1 = stayed with friends, 0 = otherwise
F6-7 1 = other, 0 = otherwise

Q8 Previous evacuation experience
F8-1 Regarding lodging, 1 = very satisfied, 2 = satisfied,

2.5 = no opinion, 3 = dissatisfied, 4 = very dissatisfied
F8-2 Regarding transportation, 1 = very satisfied, 2 = satisfied,

2.5 = no opinion, 3 = dissatisfied, 4 = very dissatisfied
F8-3 Regarding overall cost, 1 = very satisfied, 2 = satisfied,

2.5 = no opinion, 3 = dissatisfied, 4 = very dissatisfied

Q11 Means of hearing evacuation order
F11-1 1 = not heard, 0 = otherwise
F11-2 1 = TV news, 0 = otherwise
F11-3 1 = Text or voice message by phone, 0 = otherwise
F11-4 1 = Radio, 0 = otherwise
F11-5 1 = Family or friends, 0 = otherwise

Q12 Information channel
F12-1 1 = Depend on traditional info (TV, radio, printed

newspapers, and digital news websites and apps),
0 = otherwise

F12-2 1 = Depend on authority info (text by phone, government
websites, and government apps), 0 = otherwise

F12-3 1 = Depend on social media, 0 = otherwise

Q13 Trust government or family
F13 1 = Yes, 0 = no

“FID”: Feature ID.
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Pl ¼
eVlP
j∈CeVj

ð8Þ

Note that Eq. (8) structurally resembles Eq. (6). The probability
formula arises from the key assumption that the random utility
components ϵij follow a Gumbel distribution, leading to the

property that the difference between two Gumbel-distributed var-
iables is logistically distributed. Thus, the probability that the utility
of alternative l exceeds that of any other alternative j can be mod-
eled using this closed-form logistic function.

Aside from MNL, there are more various random utility models
under different assumptions. For instance, the multinomial probit

Table 4. Coding of features (Part 2)

QID FID Keyword and options

Q18 Preference for hotels and shelters
F18-1 1 = Very unlikely or unlikely to prefer smaller shelter such as government-contracted hotels, 0 = other
F18-2 1 = Very unlikely or unlikely to prefer the shelter provides people with spacious room, 0 = other
F18-3 1 = Very unlikely or unlikely to prefer the shelter deep cleans its space before people are admitted, 0 = other
F18-4 1 = Very unlikely or unlikely to prefer the shelter takes body temperatures before people are admitted, 0 = other
F18-5 1 = Very unlikely or unlikely to prefer the shelter can provide COVID-19 tests, 0 = other
F18-6 1 = Very unlikely or unlikely to prefer the shelter requires people to wear a mask all the time except while eating or drinking, 0 = other
F18-7 1 = Very unlikely or unlikely to prefer the shelter provides hand sanitizers to use, 0 = other
F18-8 1 = Very unlikely or unlikely to prefer the shelter provides separate areas to isolate people with cold-like symptoms, 0 = other
F18-9 1 = Very unlikely or unlikely to prefer the shelter recommended by Google Maps and Yelp, 0 = other

Q19 Evacuation concern
F19-1 1 = Don’t want to go to public shelters, 0 = otherwise
F19-2 1 = Concerned about the traffic during evacuation, 0 = otherwise

Q20 Health issue
F20 1 = Have any of specific health issues, 0 = otherwise

Q21 Know someone diagnosed with COVID-19
F21 1 = Yes, 0 = no

Q22 COVID-19 positive
F22 1 = Yes, 0 = no

Q23 Chance of getting COVID-19
F23 1 = very unlikely, 2 = unlikely, 2.5 = no opinion, 3 = likely, 4 = very likely

Q24 Hygiene practice for COVID-19
F24 The number of practices that are never or rarely done

Q25 Age
F25-1 1 = less than 15, 0 = otherwise
F25-2 1 ¼ 16 ∼ 30, 0 = otherwise
F25-3 1 ¼ 31 ∼ 45, 0 = otherwise
F25-4 1 ¼ 46 ∼ 60, 0 = otherwise
F25-5 1 ¼ 61 ∼ 70, 0 = otherwise
F25-6 1 ¼ 71 ∼ 80, 0 = otherwise
F25-7 1 = over 80, 0 = otherwise

Q26 Gender
F26 1 = Male, 0 = otherwise

Q27 Have children
F27 1 = Yes, 0 = no

Q31 College or higher degree
F31 1 = Yes, 0 = no

Q32 Income
F32-1 1 = Less than $25,000, 0 = otherwise
F32-2 1 = $25,000 to $49,999, 0 = otherwise
F32-3 1 = $50,000 to $99,999, 0 = otherwise
F32-4 1 = $100,000 and above, 0 = otherwise

Evacuation zone
F33 1 = Zone A or B, 0 = otherwise
F33-1 1 = Zone A, 0 = otherwise
F33-2 1 = Zone B, 0 = otherwise
F33-3 1 = Zone C, 0 = otherwise
F33-4 1 = Zone D, 0 = otherwise

County
F34 1 = Duval County, 0 = otherwise

Seaside city
F35 1 = Yes, 0 = no
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model (MNP) has a similar utility function, in which the random
utility, however, follows a multivariate normal distribution rather
than a Gumbel distribution; the nested logit model further considers
the correlation in error terms; the mixed logit model additionally
allows random preference variation across individuals. Such dis-
crete choice variants significantly differ from multinomial logistic
regression.

Relationship between Multinomial Logistic Regression and
Multinomial Logit Model
In the machine learning community, multinomial logistic regres-
sion is a common classification algorithm that predicts the proba-
bilities of different outcomes of a categorical dependent variable as
a function of the independent variables. For instance, (Arbabzadeh
and Jafari 2017) predicted driving safety risk with a regularized
multinomial logistic regression using data from the second strategic
highway research program (SHRP 2) naturalistic driving study. It
can also be used to classify whether a rat is obese or predict the
primary food choice for alligators. Multinomial logistic regression
is considered a data-driven approach, as it is a variant of GLMs.

Discrete choice models depend on behavioral theory, which is
why discrete choice models are considered theory-driven. Under
the random utility maximization framework, as demonstrated ear-
lier, when certain assumptions hold, such as the random utility fol-
lowing a Gumbel distribution, a specific variant of discrete choice
models structurally resembles the multinomial logistic regression.
However, when such an assumption is absent, the resulting discrete
choice model variants diverge significantly from multinomial logis-
tic regression.

More importantly, even though a variant of discrete choice mod-
els, namely, the multinomial logit model, resembles multinomial
logistic regression, we note that multinomial logistic regression
is not a utility-based approach. In choice modeling, utility is a piv-
otal concept representing the perceived value or satisfaction derived

from selecting a particular option, reflecting the inherent prefer-
ences and decision making processes of individuals. However,
multinomial logistic regression operates without reference to util-
ity; it is purely data-driven, focusing solely on discerning relation-
ships between independent variables and the probabilities of
various outcomes. This lack of a behavioral foundation means
multinomial logistic regression does not assume a utility-based
decision making process, thus precluding the attribution of causal
relationships. Conversely, due to their behavioral grounding, results
from discrete choice analysis offer insights into human decision
making processes.

Fig. 3 further illustrates the relationship between data-driven
classification algorithms, such as GLMs, and theory-driven discrete
choice models. GLMs, designed to capture statistical relationships,
stand in contrast to random utility maximization models, which are
rooted in economic theory and provide the decision making ration-
ale of rational agents. Although most GLM variants do not align
with the majority of random utility maximization variants, it is
noteworthy that multinomial logistic regression, as a GLM variant,
bears a resemblance to the multinomial logit model, a specific vari-
ant of discrete choice models. However, this resemblance does not
detract from the data-driven nature of multinomial logistic regres-
sion, which remains widely embraced in the machine learning com-
munity. Conversely, the multinomial logit model finds extensive
use in econometrics, intrinsically linked with utility theory. Table 5
further delineates the distinctions between the logit model and lo-
gistic regression in different contexts. For more in-depth compar-
isons of two choice modeling paradigms, readers are directed to
(van Cranenburgh et al. 2022).

In this study, multinomial logistic regression is adopted as a
data-driven approach, making no behavioral assumptions and rely-
ing solely on data to ascertain relationships between independent
and dependent variables. Unlike theory-driven models, we abstain

Data-driven Classification Algorithms 

Generalized Linear Models 

Linear regression 

(Multinomial) logistic regression

Negative binomial regression

Poisson regression
…

Theory-driven Discrete Choice Models

Random Utility Maximization Models

(Multinomial) logit model

Conditional logit model

Nested logit model

…
Mixed logit model

Fig. 3. Relation between data-driven classification algorithms and theory-driven discrete choice models.

Table 5. Comparison of logit model and logistic regression

Problem Logit Model under the RUM framework Logistic Regression

Evacuation mode choice for coastal
residents

Appropriate; supported by behavioral theories; model
results are interpretable

Appropriate; relations between evacuation mode choices
and independent variables can be learned from the data

Determine whether rats are obese
based on heartbeat, blood glucose
level, etc.

Not appropriate; no rational agents are involved;
utility theory does not apply; no relevant studies can
be found

Appropriate; relevant studies can be found

Sentiment analysis of digital texts Not appropriate; no rational agents are involved;
utility theory does not apply; no relevant studies can
be found

Appropriate; keywords or other features can be used to
determine whether a document has positive sentiment or
negative sentiment; relevant studies can be found
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from analyzing causal relationships, prioritizing high classification
accuracy instead, holding significance in government-led evacu-
ation planning.

Random Forest
Besides, the RF algorithm constructs a user-defined number B of
decision trees, each trained independently on a unique bootstrap
sample of the original dataset. For each terminal node within a
tree, one variable out of m randomly selected ones is chosen to
bifurcate the node, based on the principle of impurity minimization,
until a predefined stopping criterion is met. The final prediction is
made by a majority vote across all trees. RF leverages collective
wisdom, enhancing robustness against overfitting and generally
outperforming a single decision tree in multiclass classification
tasks (Ho 1995).

For multiclass classification problems, impurity minimization, a
central tenet of RF, is typically measured using Gini impurity. The
Gini impurity for a node with K classes is computed as

Gini ¼ 1 −XK
k¼1

ðpkÞ2 ð9Þ

where pk = proportion of samples belonging to class k at the node.
The algorithm aims to minimize the Gini impurity when selecting
the optimal split at each node. The process ensures that the algo-
rithm selects the most informative features to split on, thereby
enhancing the predictive capability of the RF model.

Support Vector Machine
Similar to multinomial logistic regression and RF, support vector
machine (SVM) is a common machine learning algorithm for clas-
sification tasks (Pisner and Schnyer 2020), which aims to find the
optimal boundary that separates different classes in the feature
space. However, unlike multinomial logistic regression that only
considers linear boundaries, SVM is capable of finding both linear
and nonlinear boundaries by transforming the feature space using
kernel functions.

The fundamental idea of SVM is to construct a hyperplane in the
n-dimensional feature space that distinctly classifies the data points
into different categories. Mathematically, the equation of the hyper-
plane is given by

w · x − b ¼ 0 ð10Þ
where w = weight vector; x = feature vector; and b = bias term.

The objective of SVM is to maximize the margin between the
hyperplane and the nearest data point from each class, which is
known as the support vector. Therefore, the optimization problem
can be formulated as

Max
w;b

2

jwj ð11Þ

s:t: yiðw · xi − bÞ ≥ 1; ∀ i ¼ 1; : : : ;N ð12Þ
where yi = label of the i-th data point; and N = number of data
points.

When the data are not linearly separable, SVM employs kernel
functions to map the feature space to a higher dimensional space
where a hyperplane can be used to separate the data points. The
most commonly used kernel functions include linear, polynomial,
and radial basis function (RBF) kernels.

SVM is known for its effectiveness in high-dimensional spaces
and its flexibility to handle different types of data, including
text and images. It has been successfully applied in various fields

such as bioinformatics, image recognition, and natural language
processing.

The implementation of these classification algorithms in this
study is facilitated by a Python library, scikit-learn, a popular
toolkit known for its efficient algorithms for machine learning
and statistical modeling.

Hyperparameter Tuning and Model Evaluation

For learning algorithms, some parameters can be learned from data,
such as βj in Eq. (5), while hyperparameters, which control the
learning process, cannot be learned from data and must be tuned
or optimized to maximize a learning algorithm’s performance.

While multinomial logit model (MLR) does not actually have
hyperparameters for tuning, a few settings used in scikit-learn’s im-
plementation of MLR are optimized. The tolerance for stopping
criteria and maximum number of iterations are searched on ranges
½1e − 8; 1e − 2� and ½10; 150�, respectively. The solvers to be
searched include “newton-cg,” “lbfgs,” “sag,” and “saga.”

A variety of model configurations for RF are considered by
varying three hyperparameters number of estimators, minimum
number of samples at a leaf node, and minimum number of samples
to split a node on ranges ½10; 300�, [1, 21], and [1, 21], respectively.
Two functions evaluating split quality are tried, namely “gini” and
“entropy.” The proportion of considered features for evaluating
splits has a range of ½5%; 100%�.

For the SVM classifier, we have explored a range of hyperpara-
meter values to determine the optimal configuration. The regulari-
zation parameter is varied over the values ½0.1; 1; 10; 100� to
control the trade-off between minimizing a training error and a test-
ing error. The kernel parameter, with options “linear” and “rbf,”
determines the type of hyperplane used to separate the data. The
gamma parameter, with value options ½0.01; 0.1; 1; 10�, defines
the influence of a single training example.

Since it is virtually impossible to test all possible combinations
of hyperparameters with grid search, Bayesian optimization, which
is designed to optimize black-box functions, is employed for hyper-
parameter tuning in this study. The iterative process of Bayesian
optimization can be stated as follows: given all observations of
the objective function (accuracy as a function of hyperparameters)
whose structure is unknown, a prior is placed over the random func-
tion; after evaluating the function, which yields a new observation,
the prior is updated to obtain the posterior distribution over the un-
known function; the posterior distribution is then used to construct
an acquisition function that finds the next point for evaluation.
Compared to evaluating the black-box function, the evaluation
of the acquisition function is inexpensive. More details of hyper-
parameter tuning are available in Yang and Shami (2020).

Five-fold cross-validation is used to evaluate the performance of
a classification model. We use accuracy as the evaluation metric,
which is computed as the number of correct classifications divided
by the total number of predicted samples.

Results

Feature Importance

First, we identify the most significant factors of hurricane evacu-
ation decisions, namely, EvacVolunt and EvacMandt. Fig. 4 shows
the 15 factors=features with the highest importance scores pro-
duced by RF. For both decisions, the order of important features
is largely the same. In particular, F3-1 Safety perception under
Category 3 and F3-2 Safety perception under Category 2 are
the two most important features in predicting EvacVolunt and

© ASCE 04024032-11 Nat. Hazards Rev.

 Nat. Hazards Rev., 2024, 25(4): 04024032 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

FL
O

R
ID

A
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 o
n 

08
/1

1/
25

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



EvacMandt. Note that Tables 3 and 4 provide the coding of each
feature. Fig. 4 therefore confirms that the response’s perception of a
hurricane is the most significant predictor of the evacuation deci-
sion, with or without a government-issued evacuation order. This
finding is consistent with Whitehead et al. (2000) and Dash and
Gladwin (2007).

The strong correlation between hurricane safety perception and
voluntary evacuation decision (i.e., EvacVolunt) can be further
illustrated in Fig. 5. Fig. 5 clearly shows how the evacuation intents
vary across two respondent groups: those who perceived it safe to
stay at their home if a hypothetical hurricane of Category 3 hit and
those who perceived the hurricane risk otherwise. Nearly 90%
(30.6%þ 57.9%) of the respondents who perceived it safe indi-
cated their evacuation as “unlikely” or “very unlikely.” By contrast,
about 80% (41.0%þ 36.7%) of the respondents who perceived the
risk differently indicated their evacuation as “very likely” or
“likely.” In other words, Fig. 5 effectively illustrates the variation
in evacuation intentions between two groups of respondents. Indi-
viduals who believe it is safe to remain in their homes during a
hypothetical Category 3 hurricane are more inclined to stay,
whereas those who perceive a higher risk from the hurricane are
more likely to evacuate, even when the evacuation order is volun-
tary. The correlation between hurricane safety perception and an-
other target variable EvacMandt is very similar; therefore, it is not
plotted or analyzed further.

Fig. 6 shows that the leading features in predicting DestChoice
are all associated with Question 6, which asked about previous
evacuation destination types (e.g., F6-2 Hotel or Model, F6-4
Stayed with families or relatives, and F6-5 Stayed with friends).
Note that F23 Self-perceived chance of getting COVID-19 and
F20 Existing health conditions appeared in Fig. 6 but not in Fig. 4.
In other words, one’s self-estimated chance of becoming sick with
COVID-19 (i.e., COVID-19 risk perception) and existing health
conditions will affect the destination choice, while they are not
notable factors for evacuation intentions.

As the choice made during previous evacuations has proven to
be a significant predictor of future evacuation destinations (referred
to as DestChoice), we next examine their relationships. Among the
respondents who answered Q5 asking whether they evacuated in
the previous hurricanes, only 249 (43.5%) indicated that they
evacuated, whose evacuation destination choices were distributed
as shown in Fig. 7. Nearly half of the evacuees went to families or
relatives’ houses, followed by 25.8% evacuees who went to hotels
or motels. By contrast, the public shelters provided by governments
only accommodated a small fraction of evacuees (3.8%). Similar
destination preferences were reported in Whitehead (2003), in
which 70.2% stayed with friends or family but only 5.5% went
to public shelters. Fig. 8 shows the correlation between past and
future evacuation destinations for the 249 respondents. Unsurpris-
ingly, staying with families or friends or at hotels/motels are the
three popular choices. The very high correlation explains why

Fig. 4. Normalized feature importance for EvacVolunt and EvacM
and t.

Fig. 5. Hurricane safety perception and evacuation intent.

Fig. 6. Normalized feature importance for DestChoice.

Fig. 7. Distribution of previous evacuation destinations.
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the past evacuation destination choice is the most important predic-
tor of the future destination choice.

It should be noted that among the 249 evacuees, 222 (89.2%)
used personal vehicles as the evacuation transportation mode. Sim-
ilar findings have also been reported by Lindell et al. (2011) (90%)
and Southworth and Chin (1987) (90% in a nighttime evacuation).

As some features about the evaluation of previous evacuation
experience are found significant for the classifications in Fig. 6,
Fig. 9 presents the evaluation of previous evacuation experience.
It can be seen that most respondents were satisfied with their pre-
vious evacuation. The experience ratings did not vary significantly
over various aspects of evacuations (i.e., lodging, transportation,
and overall cost).

Model Evaluation

To achieve the highest classification accuracy, the 29, 33, and 30
features with the highest importance scores are eventually selected
for three target variables, i.e., EvacVolunt, EvacMandt, and Dest-
Choice, respectively. As five-fold cross-validation is performed,
Fig. 10 examines the comparative accuracies of three classification
algorithms across different problems. The findings are as follows:
SVM and RF consistently outperform MLR across all categories.
Accuracies differ across the classification tasks, with the highest
accuracy achieved in DestChoice and the lowest in EvacVolunt.
The mean accuracies of RF for the three problems are 0.56,
0.53, and 0.66, respectively. RF performs the best in the third

classification problem DestChoice. RF’s mean accuracy is slightly
over 0.5. There are two possible reasons for the inferior perfor-
mance of MLR. First, there might be a multicollinearity issue
in the features, such as between F3-1 Safety perception under
Category 2 and F3-2 Safety perception under Category 3. Second,
MLR, as a generalized linear model, predicts the output depends on
the linear combination of inputs, while the linear assumption may
not hold in this context. A nonlinear combination of inputs might
better characterize the underlying relation.

We next examine the performance of RF by analyzing the con-
fusion matrix. Figs. 11–13 show the confusion matrices for three
classification problems. In each of the figures, the left matrix is
without normalization and the right one is normalized. The diago-
nal elements of the confusion matrix represent correct predictions,
while off-diagonal elements are those mislabeled by the classifier.

Fig. 11 indicates that when the true evacuation intent is “very
likely,” the recall is 92%, which is very high. Note that recall mea-
sures the percentage of relevant samples that are correctly retrieved.
Similarly, when the true evacuation intent is “unlikely,” the recall is
81%. When the actual intent is “no opinion,” the recall is pretty low,
as it is frequently mispredicted as “likely” or “unlikely.” It should
be noted that there is only one sample where the true intent is “very
unlikely.” The misprediction by RF as “very likely” for this lone
sample could be considered an outlier prediction. Therefore, de-
spite the overall accuracy of 56%, the recall achieved by RF for
some important classes, such as “very likely” and “unlikely,” is
substantially high.

Fig. 12 shows similar results for EvacMandt: when the true label
is “unlikely,” the classification recall is as high as 89%; when the
true label is “no opinion,” the classification recall is quite low.
When two classes “very likely” and “likely” are merged as “to
evacuate,” the classification recall for this class is 60=70 ¼ 86%.
Similarly, when “unlikely” and “very unlikely” are merged as
“to stay,” the recall is 25=30 ¼ 83%. In addition, when classes
are merged for EvacVolunt, RF can achieve very high recalls:
95% for “to evacuate” and 79% for “to stay.”

A significant improvement in recall is expected, considering that
the reduction in the number of classes due to merging inherently
simplifies the classification task. Such metrics are comparable to
the performance of other binary classification tasks in the literature.
For instance, (Zhao et al. 2020a) reported 87.0% as classification
accuracy when studying the preevacuation behavior of individuals
in a cinema, namely classifying the normal stage (NS) and response
stage (RS). It is worth noting that the training data used by

Fig. 8. Correlations of past and future evacuation destinations.

Fig. 9. Evaluations of previous evacuation experience.

Fig. 10. Classification algorithm comparisons for three target
variables.
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Zhao et al. (2020a) is imbalanced: NS has a much higher percent-
age (i.e., 79.9%) than RS. For this imbalanced classification task, a
baseline classifier based on the zero rule, meaning that predicting
the majority class all the time can yield an accuracy of 79.9%,
which is not very far from 87.0%. In addition, the sample size
is over 5,000 in the work by Zhao et al. (2020a), which is much
larger than in this study.

As illustrated in Fig. 13, since 64% of respondents selected
FamiFrie as the destination (which implies imbalanced classes),

FamiFrie is much easier to predict. 94% of FamiFrie respondents
are successfully detected. By contrast, RF can correctly predict
55% of respondents choosing HMHSharing.

Application of the Proposed Data-Driven Model

The proposed data-driven model for predicting the evacuation
decisions of residents can be incorporated into a government-led

(a) (b)

Fig. 11. Confusion matrix for EvacVolunt: (a) without normalization; and (b) normalized.

(a) (b)

Fig. 12. Confusion matrix for EvacMandt: (a) without normalization; and (b) normalized.
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evacuation planning framework. For resident i, we define αi and βi
as those factors for evacuation decisions that can and cannot be
influenced by the emergency management authority (or inter-
changeably government), respectively. Since αi can be affected
by a government decision, denoted as x, we also write αi explicitly
as αiðxÞ. The decision variable yi denotes the evacuation choice of
resident i. For simplicity, yi can be binary, where yi ¼ 1 indicates
the decision to evacuate, and yi ¼ 0 indicates the decision to stay.
Alternatively, yi could be expanded to represent other decisions
such as mode of evacuation, time of departure, and route choice.
The hurricane evacuation decision making process of resident
i can be represented by a conceptual optimization model, as
follows:

Max
yi

hðyi;αiðxÞ; βiÞ ð13Þ

s:t: gðyi; xÞ ≤ 0; ∀ i ð14Þ

In this conceptual decision making problem, resident i pursues
some objective, namely, Eq. (13), subject to constraint (14). The
government’s intervention decision, denoted as x, can impose direct
restrictions on the options available to residents. For example, if the
government does not provide transit, it restricts residents from
using it for evacuation, and similarly, if a roadway is blocked, res-
idents are prevented from using that route. Therefore, in the con-
ceptual optimization model, x appears in constraint (14). Since a
government decision x can affect factors αiðxÞ, it can indirectly
influence the evacuation decision made by resident i.

The individual decision making problem, namely, Eqs. (13)
and (14), is unfortunately not fully understood by the government.
The data-driven model can thus be employed by the government to
predict evacuation decisions of resident i for given government de-
cision x, although the predicted decision could deviate from the true
decision with a certain probability. Such a data-driven prediction
routine can be represented by yi ¼ f̂ðxÞ, ∀ i. Then, the government
can solve its evacuation planning optimization problem, conceptu-
ally written as

Min
x

pðx; yiÞ ð15Þ

s:t: qðxÞ ≤ 0 ð16Þ

yi ¼ f̂ðxÞ; ∀ i ð17Þ

where the government seeks to achieve its goal Eq. (15), such as
minimizing evacuation makespan (i.e., the total time required for
the entire evacuation process) or maximizing evacuation rate
(i.e., percentage of people who evacuate), subject to some resource
constraint Eq. (16). Constraint (17) gives the anticipated decision of
resident i for a given government decision x. The government’s
objective Eq. (15) depends on both x and yi. As the government
is unable to predict a resident’s decision with 100% accuracy,
the government can optimize the expectation of its objective.
Detailed formulations for such government-led evacuation plan-
ning problems and relevant case studies should be developed in
the future.

Conclusions

Unlike most theory-driven hurricane evacuation behavior research
in the literature, this study presents a data-driven approach for
classifying evacuation decisions of evacuees. A mixed-mode sur-
vey was conducted in two metropolitan areas of Florida during
the 2020 Atlantic hurricane season. Three widely used supervised
learning algorithms, i.e., multinomial logistic regression, RF, and
SVM, have been trained on the survey data and evaluated through
five-fold cross-validation. We highlight the following findings:
1. Hurricane risk perception is the most significant predictor for

both voluntary and mandatory evacuation decisions.
2. Regarding the choice of destination types, respondents tend to

follow their prior choices.
3. RF outperforms multinomial logistic regression in classifying

evacuation decisions and destination choices.

(a) (b)

Fig. 13. Confusion matrix for DestChoice: (a) without normalization; and (b) normalized.
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4. RF achieves very high recall (e.g., over 80%) for certain classes,
such as “very likely” and “likely” to evacuate. A high recall in
these categories means our model is efficiently capturing a sig-
nificant portion of individuals genuinely inclined to evacuate.
When some related evacuation intents are merged, higher clas-
sification recall is achievable.

5. The COVID-19 risk perception and existing health conditions
will affect the evacuation destination choice but not the evacu-
ation intent.
The developed data-driven model for hurricane evacuation

behavior classification can be incorporated into a government-
led evacuation planning framework. For example, the government
can estimate the number of evacuees if some factors are changed
and maximize the evacuation compliance rate subject to some re-
source constraints, as illustrated in the section “Application of the
Proposed Data-Driven Model.” Additional work is needed to con-
nect the evacuation behavior modeling literature to the government-
led evacuation planning literature.

The size of the sample used in this study is limited. Gathering a
significant number of responses through a survey can be costly, yet
it is valuable in order to attain improved accuracy in classification.
Considering that evacuation behavioral data are typically very
expensive to collect, implying the number of samples is usually
limited, transfer learning could be conducted to reuse a pretrained
model based on data from nearby or similar jurisdictions to im-
prove the generalization of a new data-driven model being devel-
oped by a jurisdiction facing data availability issues.

While a data-driven approach has its comparative advantage, it
is not meant to replace theory-driven models, which are essential if
interpretable results or causal relations are needed. Instead, given
its better predictive capability, the data-driven modeling paradigm
serves as an attractive alternative, which can complement the
existing theory-driven approaches (van Cranenburgh et al. 2022).
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